Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tường Nguyễn Thế

Cho 3 số thực a, b, c khác 0 thoả mãn ab+bc+ca=1. Tính giá trị của biểu thức: \(A=\dfrac{b^2+bc}{\sqrt{a^4+a^2}}.\dfrac{c^2+ca}{\sqrt{b^4+b^2}}.\dfrac{a^2+ab}{\sqrt{c^4+c^2}}\)

Akai Haruma
10 tháng 2 2018 lúc 14:11

Lời giải:

Từ \(ab+bc+ac=1\Rightarrow a^2+ab+bc+ac=a^2+1\)

\(\Leftrightarrow (a+b)(a+c)=a^2+1\)

Tương tự: \(\left\{\begin{matrix} b^2+1=(b+c)(b+a)\\ c^2+1=(c+a)(c+b)\end{matrix}\right.\)

Khi đó:

\(A=\frac{(b^2+bc)(c^2+ca)(a^2+ab)}{\sqrt{(a^4+a^2)(b^4+b^2)(c^4+c^2)}}\) \(=\frac{b(b+c)c(c+a)a(a+b)}{\sqrt{a^2b^2c^2(a^2+1)(b^2+1)(c^2+1)}}\)

\(=\frac{abc(a+b)(b+c)(c+a)}{abc\sqrt{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}}\) \(=\frac{abc(a+b)(b+c)(c+a)}{abc(a+b)(b+c)(c+a)}=1\)

Vậy \(A=1\)


Các câu hỏi tương tự
camcon
Xem chi tiết
dia fic
Xem chi tiết
Big City Boy
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Bùi Đức Anh
Xem chi tiết
Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
Lưu Phương Thảo
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết