Cho tam giác ABC vuông cân tại C, lấy M thuộc AB vẽ ME, MF lần lượt vuông góc với AC,BC; O là trung điểm của AB. Cmr tam giác OEF vuông cân
Cho tam giác ABC cân tại A có cạnh BC không đổi, M là một điểm thuộc cạnh BC. kẻ ME, MF lần lượt vuông góc với cạnh AB, AC. C/M: ME+MF không đổi.
Cho tam giác ABC cân tại A có cạnh BC không đổi, M là một điểm thuộc cạnh BC. kẻ ME, MF lần lượt vuông góc với cạnh AB, AC.
C/M: ME+MF không đổi.
cho tam giác ABC vuông cân tại A. vẽ AD vuông góc BC. lấy M bất kì thuộc BC. vẽ ME vuông góc AB, MF vuông góc AC. tính số đo của góc EDF
Xét tứ giác AFME có góc A=E=F = 90 độ nên AEMF là hình chữ nhật
nên AE=MF (1)
Xét tam giác MFC có góc F=90 độ , góc C=45 độ ( do ABC vuông tại A) do đó MFC cân tại F
do đó FM=FC (2)
từ (1) và (2) ta có AE=FC.
Xét tam giác DCF và DAE có DC=DA, FC=AE và góc DCF=DAE=45 độ , do đó hai tam giác bằng nhau theo c.g.c
nên \(\widehat{FDC}=\widehat{ADE}\Rightarrow\widehat{ADE}+\widehat{ADF}=\widehat{FDC}+\widehat{ADF}=90^0\)
vậy góc EDF=90 độ
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó:ΔAMB=ΔAMC
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó:ΔAEM=ΔAFM
Suy ra:ME=MF
hay ΔMEF cân tại M
c: Ta có: AE=AF
ME=MF
Do đó: AM là đường trung trực của FE
hay AM⊥FE
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
a, Xét tam giác AMB và tam giác AMC có
AM _ chung
AB = AC
^MAB = ^MAC
Vậy tam giác AMB = tam giác AMC (c.g.c)
b, Xét tam giác AEM và tam giác AFM có
AM _ chung
^MAE = ^MAF
Vậy tam giác AEM = tam giác AFM (ch-gn)
=> AE = AF ( 2 cạnh tương ứng )
=> EM = FM ( 2 cạnh tương ứng )
Xét tam giác MEF có EM = FM
Vậy tam giác MEF cân tại M
c, AE/AB = AF/AC => EF // BC
mà tam giác ABC cân tại A có AM là phân giác
đồng thời là đường cao
=> AM vuông BC
=> AM vuông EF
Giúp mìh.
Cho tam giác ABC cân tại A có cạnh BC không đổi, M là một điểm thuộc cạnh BC. kẻ ME, MF lần lượt vuông góc với cạnh AB, AC.
C/M: ME+MF không đổi.
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A( AB=AC và Â= 9O độ). Đường cao BH. Trên đáy BC lấy điểm M( M khác B và C), vẽ MD vuông góc với AB. ME vuông góc với AC. MF vuông góc với BH. Chứng minh MF=FH
b) C/minh tam giác DBM = tam giác FMB
Cho tam giác ABC cân tại A. m thuộc BC. ME,MF lần lượt vuông góc vớiAC,AB (E thuộc AC,F thuộc AB). Đường cao CH. Chứng minh rằng:
ME+MF không đổi khi M di chuyển trên BC.
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH