Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 3 2021 lúc 21:13

à thanks mình xin lỗi nhé ! 

a, Xét tam giác HAC và tam giác ABC ta có 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1) 

\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3) 

Xét tam giác HAB và tam giác ABC ta có : 

^AHB = ^BAC = 900

^B _ chung 

Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)

Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB 

b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )

\(\Rightarrow HA=\frac{15.20}{25}=12\)cm 

Khách vãng lai đã xóa
Phạm Thành Đông
24 tháng 3 2021 lúc 8:42

A B C H M N I

Khách vãng lai đã xóa
Phạm Thành Đông
24 tháng 3 2021 lúc 8:53

Kéo dài MN, cắt AC tại I. Do đó N là giao điểm của MI và AH (vì \(N\in AH\)) và \(I\in AC\)

Xét \(\Delta HAB\)có:

\(MB=MH\)(giả thiết).

\(NA=NH\)(giả thiết).

\(\Rightarrow MN\)là đường trung bình của \(\Delta HAB\).

\(\Rightarrow MN//AB\)(tính chất).

\(\Rightarrow MI//AB\).

Mà \(AB\perp AC\)(vì \(\Delta ABC\)vuông tại A).

\(\Rightarrow MI\perp AC\)

Xét \(\Delta MAC\)có:

\(MI\perp AC\left(I\in AC\right)\)(chứng minh trên).

\(AH\perp MC\)(vì \(AH\perp BC\)).

Và N la giao điểm của MI và AH.

\(\Rightarrow N\)là trực tâm của \(\Delta MAC\)

\(\Rightarrow CN\perp AM\)(điều phải chứng minh).

Khách vãng lai đã xóa
Lê Nguyễn Phương Khanh
Xem chi tiết
Bùi Mạnh Tuấn
13 tháng 4 2016 lúc 21:03

Khong du dk cm

Nguyễn Trí Dũng
23 tháng 5 2021 lúc 22:00

Sao ý A nhiều ng bảo ko làm đc nhỉ??? 

Ta chỉ cần dùng tính chất bắc cầu là ra mà

Khách vãng lai đã xóa
Hoàng Anh Khuất Bá
Xem chi tiết
Kiều Hương Ly
Xem chi tiết
Ran Mori and Kudo Shinic...
6 tháng 5 2016 lúc 20:39

Chứng minh câu a)

Ta có:  AH vuông góc với BC ( giả thiết)

=> góc H = 1v

Xét tam giác AHC và tam giác BHA có:

góc AHC=AHB=90 độ

góc B=góc C=45 độ

=>2 tam giác đồng dạng

Câu b)

*BC=?

Ta có tam giác ABC vuông tại A( theo giả thiết0

Theo định lí pi ta go, ta có :

BC^2=AC^2+AB^2=400+225=625

=>BC=25

*AH=?

S tam giác ABC=1/2.AB.AC hoặc 1/2BC.AH

=>AB.AC=BC.AH =>AB/BC=AH/AC

=>AH=15.20/25=12

Câu c)mk ko piet giai nha sorry nha

Nguyễn Khánh Linh
Xem chi tiết
๒ạςђ ภђเêภ♕
30 tháng 3 2021 lúc 21:18

a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)

\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)

\(\Rightarrow\widehat{HAB}=\widehat{C}\)

- Xét tg AHB và tg CHA có :

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)

\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)

(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)

b) Xét tg BAH vuông tại H có :

AB2=BH2+AH2 (Pytago)

=>152=BH2+122

=>225=BH2+144

=>BH2=81

=>BH=9cm

- Do tg AHB đồng dạng tg CHA (cmt)

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)

\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)

\(\Rightarrow HC=16cm\)

- Có : HB+HC=BC

=> BC=9+16=25

- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)

#H

(Ý c,d để suy nghĩ tiếp)

Khách vãng lai đã xóa
Nguyễn Huy Tú
30 tháng 3 2021 lúc 21:22

A B C H 15 12 M

a, Xét tam giác AHB và tam giác CAB ta có : 

^AHB = ^A = 900

^B _ chung 

Vậy tam giác AHB  ~ tam giác CAB ( g.g ) (1)

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^A = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2) 

Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC 

b, Áp dụng định lí Py ta go cho tam giác AHB ta có : 

\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm 

Ta có tam giác AHB ~ tam giác AHC ( cma ) 

\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm 

Áp dụng Py ta go cho tam giác AHC ta có : 

\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm 

c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)

mà \(BM=BC-MC=18-MC\)

do \(BC=BH+HC=9+9=18\)cm

\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm 

\(\Rightarrow BM=BC-MC=18-9=9\)

( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )

\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)

thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy 

bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé 

Khách vãng lai đã xóa
Chương Nguyễn
Xem chi tiết
Nguyễn Ngọc Tuyết Nhi
Xem chi tiết
Nguyễn Ngọc Tuyết Nhi
25 tháng 7 2023 lúc 9:53

Ai giúp em với ạ

Trần Đình Thiên
25 tháng 7 2023 lúc 9:56

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.

Nguyễn Ngọc Tuyết Nhi
25 tháng 7 2023 lúc 11:14

anh có thể giải theo hướng c/m hcn rồi c/m tam giác vuông => hệ quả được kh ạ

Nguyễn An Nhiên
Xem chi tiết
Vũ Thị Minh Huế
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2021 lúc 12:37

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot25=15\cdot20\)

\(\Leftrightarrow AH\cdot25=300\)

hay AH=12(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Vậy: BC=20cm; AH=12cm; HC=16cm

Vũ Duy Khánh
Xem chi tiết
Uyên trần
24 tháng 4 2021 lúc 22:21

tự vẽ hình nhé 

a, ta có <HBA+<BAH =90 

              <BAH + <HAC=90

\(\Rightarrow\) <HBA=<HAC 

xét \(\Delta AHB\) và \(\Delta CHA\)

<HBA=<HAC 

<BHA=<CHA=90

\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)

b, Xét \(\Delta ABH\)  vg tại H, áp dụng đl Py ta go ta đc 

\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)

Ta có \(\Delta ABH\) ~ \(\Delta CAH\)

\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)

\(\Rightarrow CH=16\)

Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc 

     \(AH^2+CH^2=AC^2\Rightarrow AC=20\) 

c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc 

\(AB^2+AC^2=BC^2\Rightarrow BC=25\)

Ta có AM là tia  pg của <BAC 

\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)

 

 

Nguyễn Lê Phước Thịnh
24 tháng 4 2021 lúc 22:50

a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)

Do đó: ΔAHB\(\sim\)ΔCHA(g-g)

Nguyễn Lê Phước Thịnh
24 tháng 4 2021 lúc 22:50

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=15^2-12^2=81\)

hay BH=9(cm)

Vậy: BH=9cm