Cho a,b,c,x,y,z>0 . CMR:
\(\frac{x}{ay+bz}+\frac{y}{az+bx}+\frac{z}{ax+by}\ge\frac{3}{a+b}\)
1,CMR nếu a,b,c x,y,z thỏa mãn điều kiện :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
2,CMR nếu \(\frac{a+bx}{b+cy}=\frac{b+cx}{c+ay}=\frac{c+ax}{a+by}\)
thì \(a^3+b^3+c^3-3abc=0\)
3,CMR nếu \(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
thì x=y=z hoặc x2y2z2=1
Cho x y z a b c > 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tìm GTNN của \(P=\frac{1}{ax+by+cz}+\frac{1}{ay+bz+cx}+\frac{1}{az+bx+cy}\)
GTLN chứ ?
\(P\le\frac{1}{9}\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}+\frac{1}{az}+\frac{1}{bx}+\frac{1}{cy}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
?
tìm giá trị nhỏ nhất cơ mà bạn PHÙNG MINH QUÂN ???
thử cho a=b=c=1 ko tìm được gtnn
Cho a,b,c là 3 số khác 0 thỏa mãn \(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
CMR \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
Bình phương ba vế suy ra \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Sau đó chứng minh tương tự bunhiacopxki
CMR nếu a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( Giả thiết các tỉ số đều có nghĩa )
CMR nếu a,b,c,x,y,z thỏa mãn :
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(a^2+c^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
( giả thiết các tỉ số đều có nghĩa )
\(Cho:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.CMR:\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Rightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=\frac{0}{a^2+b^2+c^2}=0\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}}\Rightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{x}{a}\end{cases}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
* C1 :(bz - cy)/a = (abz - acy)/a2
(cx - az)/b = (bcx - abz)/b2
(ay - bx)/c = (acy - bcx)/c2
Mà (bz - cy)/a = (cx - az)/b = (ay - bx)/c
=>(abz - acy)/a2 = (bcx - abz)/b2 = (acy - bcx)/c2 = (abz - acy + bcx - abz + acy - bcx)/a2 + b2 + c2 = 0
=>(bz - cy)/a = (cx - az)/b = (ay - bx)/c = 0
=>bz - cy = cx - az = ay - bx = 0
*Xét bz - cy = 0
=>bz = cy
=>z/c = y/b
Chứng minh tương tự = >x/a = y/b ; x/a = z/c
=> x/a = y/b = z/c
*C2 :
(bz - cy)/a = (abz - acy)/ax
(cx - az)/by = (bcx - abz)/by
(ay - bx)/cz = (acy - bcx)/cz
Làm tương tự như C1
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Suy ra: \(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}\). Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\frac{bxz-cxy}{ax}=\frac{cxy-azy}{bx}=\frac{azy-bxz}{cx}=\frac{\left(bxz-cxy\right)+\left(cxy-azy\right)+\left(azy-bxz\right)}{ax+bx+cx}\)
\(=\frac{\left(bxz-bxz\right)-\left(cxy-cxy\right)-\left(azy-azy\right)}{ax+by+cz}=\frac{0}{ax+by+cz}\)
Suy ra: \(\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Leftrightarrow}\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}\)
Áp dụng tính chất tỉ lệ thức ta được: \(\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}^{\left(đpcm\right)}}\)
\(cho\frac{bz-xy}{a}=\frac{cx-az}{b}\frac{ay-bx}{c}.CMR\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) chứng minh rằng với mọi a,b,c dương ta có \(\frac{1}{ax+by+cz}+\frac{1}{bx+cy+az}+\frac{1}{cx+ay+bz}\le\frac{1}{a+b+c}\)
Cho \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\). CMR: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)