Cho x y z a b c > 0 và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\). Tìm GTNN của \(P=\frac{1}{ax+by+cz}+\frac{1}{ay+bz+cx}+\frac{1}{az+bx+cy}\)
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) chứng minh rằng với mọi a,b,c dương ta có \(\frac{1}{ax+by+cz}+\frac{1}{bx+cy+az}+\frac{1}{cx+ay+bz}\le\frac{1}{a+b+c}\)
1.Cho x=by+cz,y=ax+cz,z=ax+by,x+y+z khác 0.Tính:
Q=\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{c}\)
2.Cho a+b+c=0.C/m:\(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)\)
3.Cho x+y+z=0.C/m:\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
4.Cho a,b,c đôi một khác nhau và khác 0 thỏa mãn:\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
C/m:abc=1 hoặc abc=-1
5.Cho x+y+xy=3,yz+y+z=8,xz+x+z=15.Tính x+y+z
6. Cho xy+x+y=-1 ;\(x^2y+xy^2=-12\)
Tính P=\(x^3+y^3\)
7.Cho a,b,c khác 0:\(\frac{ay-bx}{c}=\frac{cx-az}{b}=\frac{bz-cy}{a}\)
C/m:\(\left(ax+by+cz\right)^2=\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\)
8Cho \(\frac{x}{a}+\frac{y}{b}=1\)và \(\frac{xy}{ab}=-2\)Tính \(\frac{x^3}{a^3}+\frac{y^3}{b^3}\)
10Cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)cà x^2+y^2=1 Chứng minh rằng
a) bx2 =ay2
b)\(\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25 Cho x,y,z khác 0 và a,b,c dương thỏa mãn ax+by+cz=0 cà a+b+c = 2007
Tính giá trị bieu thức P=\(\frac{ax^2+by^2+cz^2}{bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2}\)
với a;b;c;x;y;z > 0 chứng minh \(\left(ax+by+cz\right)\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\left(a+b+c\right)^2\)
\(CMR:\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c},\forall x,y,z,a,b,c>0\)
a)Cho các số x,y,z \(\ge\)1.CMR: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\).
b) Cho x,y,z \(\ge\)0 và x\(\le1;y\le1;z\le1\)chứng minh:
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\le\frac{3}{1+xyz}\)
c)Cho a + b\(\ge\)2.CMR: \(a^3+b^3\le a^4+b^4\)
d)Cho a2+b2\(\ge\frac{1}{4}.CMR:a^4+b^4\ge\frac{1}{32}\)
Cho \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)CMR :
\(\sqrt[3]{ax}+\sqrt[3]{by}+\sqrt[3]{cz}=\sqrt[3]{\left(a+b+c\right)\left(x+y+z\right)}\)
1 Cho x,y,z > 0 . CMR : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{36}{9+x^2y^2+y^2z^2+z^2x^2}\)
2 . Cho a,b,c>0 thỏa mãn ab+bc+ac=1. CMR
\(\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\le\frac{3}{2}\)