Tìm x,y thỏa mãn:
\(\left|x+y-7\right|+\left|x.y-10\right|\le0\)
Tìm x,y thỏa mãn:
a)\(^{\left|x+2y\right|+\left|4y-3\right|\le0}\)
b)\(\left|x-y-5\right|+2017\left(y-11\right)^{2018}\le0\)
c)\(^{\left(x+y\right)^{2020}+2018.\left|y-1\right|=0}\)
Tìm các số thực x và y thỏa mãn\(\left\{{}\begin{matrix}x+y=10\\x.y=9\end{matrix}\right.\)
x+y=10 và xy=9
=>x,y là các nghiệm của phương trình là:
a^2-10a+9=0
=>a=1 hoặc a=9
=>(x,y)=(1;9) hoặc (x,y)=(9;1)
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
cho hệ phương trình \(\left\{{}\begin{matrix}x+y=2\\\left(m+1\right)x+my=7\end{matrix}\right.\)
a) chứng minh rằng: với mọi m thì hệ phương trình luôn có nghiệm x,y thỏa mãn x.y =< 1
b) tìm m là số nguyên để hệ phương trình có nghiệm thỏa mãn x.y>0
Lời giải:
a.
Từ $x+y=2\Rightarrow y=2-x$. Thay vào PT(2):
$(m+1)x+m(2-x)=7$
$\Leftrightarrow x+2m=7$
$\Leftrightarrow x=7-2m$
$y=2-x=2-(7-2m)=2m-5$
Vậy hpt có nghiệm $(x,y)=(7-2m, 2m-5)(*)$
Nếu $x,y$ có 1 số $\geq 0$, một số $\leq 0$ thì $xy\leq 0< 1$
Nếu $x,y$ cùng $\geq 0$ thì áp dụng BĐT Cô-si:
$2=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq 1$
Vậy tóm lại $xy\leq 1(**)$
Từ $(*); (**)$ suy ra với mọi $m$ thì hpt luôn có nghiệm $x,y$ thỏa mãn $xy\leq 1$
b.
$xy>0$
$\Leftrightarrow (7-2m)(2m-5)>0$
$\Leftrightarrow 7> 2m> 5$
$\Leftrightarrow \frac{7}{2}> m> \frac{5}{2}$
Do $m$ nguyên nên $m=3$
Thử lại thấy đúng.
Tìm x, y thỏa \(\left(2x-y+7\right)^{2018}+\left(\left|x-3\right|\right)^{2019}\le0\)
Tìm tất cả các cặp số (x;y) thỏa mãn :\(\left(2x-y+7\right)^{2012}+|x-3|^{2013}\le0\)
\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)
Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)
\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)
Vậy....
có bao nhiêu cặp số (x.y) thỏa mãn:
a, \(\left|x\right|+\left|y\right|=10\)
b, \(\left|x\right|+\left|y\right|< 10\)
a) Ta có : \(\left|x\right|+\left|y\right|=10\)
+) Xét |x| + |y| = x + y = 10
Ta lần lượt đếm từng cặp :
0 + 10 = 10
1 + 9 = 10
2 + 8 = 10
3 + 7 = 10
4 + 6 = 10
5 + 5 = 10
6 + 4= 10
7 + 3 = 10
8 + 2 = 10
9 + 1 = 10
10 + 0 = 10
=> Có 20 cặp số
+) TH âm cũng có thêm 20 cặp số
<=> 20 cặp số + 20 cặp số = 40 cặp số
b) Nếu x = 0 thì \(y=0;\pm1;\pm2;...;\pm9\)gồm 19 giá trị.Nếu x = \(\pm1\)thì y = \(0;\pm1;\pm2;...;\pm8\),có 17 giá trị...Nếu x = \(\pm8\)thì \(y=0;\pm1\). Nếu x = \(\pm19\)thì y = 0 ,gồm 1 giá trị
Có tất cả : \(2\left(1+3+...+17\right)+19=z\)(đặt z là số cần tìm)
Số số hạng là : \(\left(17-1\right):2+1=9\)
Tổng của dãy ngoặc trên là \(\left(17+1\right)\cdot9:2=81\)
=> \(2\cdot81+19=z\)
=> \(162+19=181=z\)
Vậy có tất cả 181 cặp số.
Tìm tất cả các cặp số (x,y) thỏa mãn: \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)
Ta có: \(\hept{\begin{cases}\left(5x-y\right)^{2016}\ge0\\\left|x^2-4\right|^{2017}\ge0\end{cases}\Rightarrow\left(5x-y\right)^{2016}+\left|x^2-4\right|\ge}0\)
Mà \(\left(5x-y\right)^{2016}+\left|x^2-4\right|^{2017}\le0\)
\(\Rightarrow\hept{\begin{cases}\left(5x-y\right)^{2016}=0\\\left|x^2-4\right|^{2017}=0\end{cases}\Rightarrow\hept{\begin{cases}5x-y=0\\x^2-4=0\end{cases}}\Rightarrow\hept{\begin{cases}y=\pm10\\x=\pm2\end{cases}}}\)
Vậy các cặp (x;y) là (2;10);(-2;-10)
Tìm x và y thỏa mãn :
\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
Giúp mk nha !!
Vì \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà theo đề bài \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
=>\(\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\2y=2,2\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-8}{5}\\y=1,1=\frac{11}{10}\end{cases}}\)