log2(4.3x-6)-\(\dfrac{3}{2}\).log2√2(9x-6)=1
Xét các mệnh đề sau
(1) log2(x - 1)2 + 2log2(x+1) = 6
<=> 2log2(x-1) + 2log2(x+1) = 6
(2) log2(x2+1) ≥ 1 + log2|x|; ∀ x ∈ R
(3) xlny = ylnx; ∀ x > y > 2
( 4 ) log 2 2 2 x - 4 log 2 x - 4 = 0 ⇔ log 2 2 x - 4 log 2 x - 3 = 0
Số mệnh đề đúng là
A. 0
B. 1
C. 2
D. 3
Đáp án C
Dựa vào giả thiết, ta thấy rằng:
đúng.
=> (4) sai. Vậy có 2 mệnh đề đúng.
Tính tổng tất cả các nghiệm của phương trình: \(\dfrac{1}{2}\).log2(x+3) = log2(x+1) + x2 - x - 4 + 2\(\sqrt{x+3}\)
ĐKXĐ: \(x>-1\)
Bước quan trọng nhất là tách hàm
\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)
Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)
Phương trình log 2 ( 2 x + 1 ) . log 2 ( 2 x + 1 + 2 ) = 6 có 1 nghiệm là x 0 . Giá trị 2 x 0 là
A. 4
B. 1 8
C. 3
D. 1
Bất phương trình log 2 ( 3 x − 2 ) > log 2 ( 6 − 5 x ) có tập nghiệm là (a;b). Tổng a + b bằng
A. 8 3 .
B. 28 15 .
C. 26 5 .
D. 11 5 .
Giải bất phương trình l o g 2 ( 3 x - 2 ) > l o g 2 ( 6 - 5 x ) được tập nghiệm là (a;b). Hãy tính tổng S=a+b
A. S= 26/5
B. S= 8/5
C. S= 28/15
D. S= 11/5
Giải bất phương trình log 2 ( 3 x - 2 ) > log 2 ( 6 - 5 x ) được tập nghiệm là (a;b). Hãy tính tổng S=a+b
A. S = 8 3
B. S = 28 15
C. S = 11 5
D. S = 31 6
Cho x dương khác 1. Chứng minh rằng
1/log2(x) + 1/log2^2(x) + . . . + 1/log2^2019(x) = 2039190/log2(x)
Cho hai số thực dương a; b thỏa mãn log2(a + 1) + log2(b + 1) ≥ 6 Giá trị nhỏ nhất của biểu thức S = a + b là
A.12
B.14
C. 8
D.16
Chọn B.
Ta có 6 ≤ log2(a + 1) + log2(b + 1) = log2[(a + 1)(b + 1) ]
Suy ra: hay ( a + b) 2 + 4( a + b) + 4 ≥ 256
Tương đương: (a + b) 2 + 4(a + b) - 252 ≥ 0
Suy ra: a + b ≥ 14
Giải phương trình log 2 ( x + 1 ) = l o g 2 ( x 2 + 2 ) - 1
A. x = 1
B. x = 0
C. x = 0, x = -4
D. x = 0, x = 1
Tìm tập nghiệm của phương trình log2(x - 2) + log2(x+1) = 2