Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiều_My
Xem chi tiết
Linh Linh
31 tháng 5 2019 lúc 11:42

Hình tự vẽ nha bạn :>

Xét ΔABCΔABC có AO = OB = OC

⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy

⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o

Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)

⇒EH=AD⇒EH=AD

Theo HTL, ta có :

{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2

⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)Hình tự vẽ nha bạn :>

Xét ΔABCΔABC có AO = OB = OC

⇒ΔABC⇒ΔABC có trung tuyến AO ứng với một cạnh và = 1212 cạnh ấy

⇒ΔABC⇒ΔABC vuông ⇒BACˆ=90o⇒BAC^=90o

Dễ dàng c/m tứ giác ADHEADHE là hcn (Aˆ=Dˆ=EˆA^=D^=E^ =1v)

⇒EH=AD⇒EH=AD

Theo HTL, ta có :

{AB.BE=BH2AC.EH=AC.AD=AH2{AB.BE=BH2AC.EH=AC.AD=AH2

⇒AB.EB+AC.EH=BH2+AH2=AB2⇒AB.EB+AC.EH=BH2+AH2=AB2(đpcm)

iloveyou
Xem chi tiết

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)FB tại C

=>EC\(\perp\)CF tại C

=>ΔECF vuông tại C

Xét (O) có

\(\widehat{ICA}\) là góc tạo bởi tiếp tuyến CI và dây cung CA

\(\widehat{CBA}\) là góc nội tiếp chắn cung CA

Do đó: \(\widehat{ICA}=\widehat{CBA}\)

mà \(\widehat{CBA}=\widehat{AED}\left(=90^0-\widehat{CAB}\right)\)

 và \(\widehat{AED}=\widehat{IEC}\)(hai góc đối đỉnh)

nên \(\widehat{ICA}=\widehat{IEC}\)

=>\(\widehat{ICE}=\widehat{IEC}\)

=>IE=IC

Ta có: \(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔCFE vuông tại C)

\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)

mà \(\widehat{IEC}=\widehat{ICE}\)

nên \(\widehat{IFC}=\widehat{ICF}\)

=>IF=IC

mà IE=IC

nên IE=IF

=>I là trung điểm của EF

b: Vì ΔCFE vuông tại C

nên ΔCFE nội tiếp đường tròn đường kính EF

=>ΔCFE nội tiếp (I)

Xét (I) có

IC là bán kính

OC\(\perp\)CI tại C

Do đó: OC là tiếp tuyến của (I)

=>OC là tiếp tuyến của đường tròn ngoại tiếp ΔECF

NGUYỄN NHẬT GIA BẢO
Xem chi tiết
Đỗ Yến Đan
Xem chi tiết
MK1208
Xem chi tiết
Mon an
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 12:06

1: Xét tứ giác AEHF có

\(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

=>AEHF là tứ giác nội tiếp

=>A,E,H,F cùng thuộc một đường tròn

2: Kẻ tiếp tuyến Ax tại A của (O)

Xét (O) có

\(\widehat{xAB}\) là góc tạo bởi tiếp tuyến Ax và dây cung AB

nên \(\widehat{xAB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

Xét (O) có

\(\widehat{ACB}\) là góc nội tiếp chắn cung BA

Do đó: \(\widehat{ACB}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BA}\)

=>\(\widehat{xAB}=\widehat{ACB}\left(1\right)\)

Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AEF}=\widehat{AHF}\)

mà \(\widehat{AHF}=\widehat{ACB}\left(=90^0-\widehat{HAC}\right)\)

nên \(\widehat{AEF}=\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{xAB}=\widehat{AEF}\)

mà hai góc này là hai góc ở vị trí so le trong

nên Ax//EF

Ta có: Ax//EF

OA\(\perp\)Ax

Do đó: OA\(\perp\)EF

Lan Huong Nguyen
Xem chi tiết
Diệp Hạ Băng
Xem chi tiết
ngoc giang
Xem chi tiết
Vân Phi Tuyết
Xem chi tiết