a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)FB tại C
=>EC\(\perp\)CF tại C
=>ΔECF vuông tại C
Xét (O) có
\(\widehat{ICA}\) là góc tạo bởi tiếp tuyến CI và dây cung CA
\(\widehat{CBA}\) là góc nội tiếp chắn cung CA
Do đó: \(\widehat{ICA}=\widehat{CBA}\)
mà \(\widehat{CBA}=\widehat{AED}\left(=90^0-\widehat{CAB}\right)\)
và \(\widehat{AED}=\widehat{IEC}\)(hai góc đối đỉnh)
nên \(\widehat{ICA}=\widehat{IEC}\)
=>\(\widehat{ICE}=\widehat{IEC}\)
=>IE=IC
Ta có: \(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔCFE vuông tại C)
\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)
mà \(\widehat{IEC}=\widehat{ICE}\)
nên \(\widehat{IFC}=\widehat{ICF}\)
=>IF=IC
mà IE=IC
nên IE=IF
=>I là trung điểm của EF
b: Vì ΔCFE vuông tại C
nên ΔCFE nội tiếp đường tròn đường kính EF
=>ΔCFE nội tiếp (I)
Xét (I) có
IC là bán kính
OC\(\perp\)CI tại C
Do đó: OC là tiếp tuyến của (I)
=>OC là tiếp tuyến của đường tròn ngoại tiếp ΔECF