rút gọn phân thức\(\frac{x^3-x^2-6x}{x^9-4x}\)
Rút gọn phân thức:
\(^{\frac{x^4-4x^2+3}{x^4+6x^2-7}}\)
\(=\frac{x^4-x^2-3x^2+3}{x^4-x^2+7x^2-7}=\frac{x^2\left(x^2-1\right)-3\left(x^2-1\right)}{x^2\left(x^2-1\right)+7\left(x^2-1\right)}=\frac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\frac{x^2-3}{x^2+7}\)
Rút gọn biểu thức
A=\(\frac{X^2-9-\left(4x-2\right).\left(x-3\right)}{x^2-6x+9}\)
=>\(\frac{x^2-3^2-\left(4x-2\right)\cdot\left(x-3\right)}{\left(x-3\right)^2}\)
=>\(\frac{\left(x+3\right)\cdot\left(x-3\right)-\left(4x-2\right)\cdot\left(x-3\right)}{\left(x-3\right)^2}\)
=>\(\frac{\left(x-3\right)\cdot\left(x+3-4x+2\right)}{\left(x-3\right)^2}\)
=>\(\frac{-3x+5}{x-3}\)
cho minh nhe!
Kết quả rút gọn biểu thức (2x - 3) (4x^2 + 6x + 9) - 2 ( 4x^3 - 25) là x =
\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)
\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)
\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)
\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)
\(=2x^2+6x+9\)
=>\(M\left(x\right)=2x^2+6x+9\)
\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)
\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)
=>\(x=-\dfrac{3}{2}\)
Rút gọn các phân thức sau
1) \(\frac{x^2-6x+5}{4x^3-3x^2-4x+3}\)
2) \(\frac{x^2-12x-13}{6x^3+25x^2+12x-7}\)
rút gọn các phân thức sau:
a) \(A=\frac{x^2-9}{x^2-6x+9}\)
b) \(B=\frac{9x^2-16}{3x^2-4x}\)
c) \(C=\frac{x^2+4x+4}{2x+4}\)
d) \(D=\frac{2x-x^2}{x^2-4}\)
e)\(E=\frac{3x^2+6x+12}{x^3-8}\)
giải hộ e vs ạ
Trả lời:
a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)
c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)
d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)
e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
Rút gọn \(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
\(\frac{x^2-9-\left(4x-2\right)\left(x-3\right)}{x^2-6x+9}\)
\(=\frac{\left(x-3\right)\left(x+3\right)-\left(4x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)
\(=\frac{\left(x-3\right)\left[\left(x+3\right)-\left(4x-2\right)\right]}{\left(x-3\right)^2}\)
\(=\frac{x+3-4x+2}{x-3}\)
\(=\frac{-3x+5}{x-3}\)
phân tích đa thức thành nhân tử:
1)x-5(x>0)
2)3+4x(x<0)
rút gọn biểu thức
1)x-(5 căn x)+6/(căn x)-3(x>=0,x><9)
2)6-2x-(căn của 9-6x+x^2) (x<3)
Bài 1: Cho biểu thức: A=\(\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
a) Rút gọn biểu thức A
b) TÍnh giá trị biểu thức A, với x=\(\frac{-1}{2}\)
c) Tìm giá trị của x để A<0
Bài 2: Cho phân thức \(\frac{2x^2-4x+8}{x^3+8}\)
a) Với điều kiện nào của x thì giá trị của phân thức xác định
b) Hãy rút gọn phân thức
c) Tính giá trị của phân thức tại x=2
d) Tìm giá trị của x để giá trị của phân thức bằng 2
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0