Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Corona
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 4 2022 lúc 22:01

a: \(f\left(-5\right)=\left(-5\right)^2+4\cdot\left(-5\right)-5=0\)

=>x=-5 là nghiệm của f(x)

b: S={-5;1}

Cuồng Sơn Tùng M-tp
Xem chi tiết
Nguyễn Thị Ngọc Ánh
5 tháng 6 2018 lúc 19:30

a, Ta có: Với x = -5

→ f(-5) = (-5)2 + 4.(-5) - 5

= 25 + ( -20 ) - 5

= 5 - 5 = 0

Vì f(-5) = 0 nên x = -5 là nghiệm của đa thức f(x)

Phạm Ngọc Thảo Vy
Xem chi tiết
nguyễn thị thắm
Xem chi tiết
Luong Ngoc Quynh Nhu
17 tháng 6 2015 lúc 12:16

mh biết làm bài này rùi bn có cần mih đang lên cho bn ko?

Vũ Trần Hoàng Bách
Xem chi tiết
Hquynh
13 tháng 4 2023 lúc 21:20

Bài 1

Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)

\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm

VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)

\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)

\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)

Ra hai kết quả khác nhau 

\(\Rightarrow x=-4\) không là nghiệm

Bài 2

\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow\) phương trình vô nghiệm 

B.Thị Anh Thơ
Xem chi tiết
Bình Minh
14 tháng 8 2018 lúc 10:35

a. Số -5 không phải là nghiệm của f(x).

b. \(S=\varnothing\)

Phạm Ngọc Thảo Vy
Xem chi tiết
Trần Quốc Anh
Xem chi tiết
IzanamiAiko123
Xem chi tiết
KAl(SO4)2·12H2O
7 tháng 8 2019 lúc 15:36

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

💥Hoàng Thị Diệu Thùy 💦
7 tháng 8 2019 lúc 15:44

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)