9 Cho đa thức f(x)=x^2+4x-5
a) Số -5 có phải là nghiệm của f(x) không
Bài 1: Cho đa thức f(x) = x2 + 4x - 5
a) Số -5 có phải là nghiệm của f(x) không?
b) Viết tập hợp S tất cả các nghiệm của f(x)
a: \(f\left(-5\right)=\left(-5\right)^2+4\cdot\left(-5\right)-5=0\)
=>x=-5 là nghiệm của f(x)
b: S={-5;1}
Cho đa thức f(x) = x2 +4x -5
a) Số -5 có phải nghiệm của đa thức f(x) ko?
b) Viết tập hợp S tất cả các nghiệm của f(x)
a, Ta có: Với x = -5
→ f(-5) = (-5)2 + 4.(-5) - 5
= 25 + ( -20 ) - 5
= 5 - 5 = 0
Vì f(-5) = 0 nên x = -5 là nghiệm của đa thức f(x)
Cho đa thức f(x)=a^2*x^2+b*x+3 có nghiệm x=-1. Hỏi x=2 có phải là nghiệm của đa thức g(x)=b*x^2-(2a^2+3)*x-5 không? Vì sao? (a, b là các hằng số khác 0)
cho đa thức f(x)=x2 +4X-5
a)số-5 có phải là nghiệm của f(x) không?
b)viết tập hợp s tất cả nghiệm của f(x)
2) cho đa thức A(x)=-x3-5x2+7x+2; B(x)=x3+6x2-3x-7
a) tính A(x)+B(x) và A(x)+B(x)
b) chứng tỏ rằng x=1 là nghiệm của A(x)+B(x) nhưng không phải là nghiệm của A(x)
mh biết làm bài này rùi bn có cần mih đang lên cho bn ko?
Bài 1. Cho hai đa thức f(x)= 4x4-5x3+3x+2 và g(x)= -4x4+5x3+7. Trong các số -4; -3; 0 và 1, số nào là nghiệm của đa thức f(x) và g(x).
Bài 2. Cho hai đa thức f(x)=-x5+3x2+4x+8 và g(x)= -x5-3x2+4x+2. CMR đa thức f(x)-g(x) không có nghiệm
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
Cho đa thức f(x) = x^2=4x-5
a/ Số -5 có phải là nghiệm của f(x) không ?
b/ Viết tập hợp S tất cả các nghiệm của f(x)
a. Số -5 không phải là nghiệm của f(x).
b. \(S=\varnothing\)
Cho đa thức f(x)=a2x2+bx+3 có nghiệm x=-1. Hỏi x=2 có phải là nghiệm của đa thức g(x)=bx2-(2a2+3)x-5 không? Vì sao? (a, b là các hằng số khác 0)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho đa thức f(x)=x(x-5)+2(x-5)
a) tìm nghiệm của đa thức f(x)
b) cho đa thức g(x) = 2x(x-2)-x2+5+4x
b1) chứng minh g(x) không có nghiệm
b2) tính f(x) -g(x)
GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP LẮM, HỨA SẼ TRẢ ĐỦ TICK, CẢM ƠN CÁC BẠN NHIỀU
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)