Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu huỳnh ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2021 lúc 21:23

a) Ta có: ABCD là hình vuông

nên DB là tia phân giác của \(\widehat{ADC}\)

\(\Leftrightarrow\widehat{ADB}=\widehat{CDB}=45^0\)

hay \(\widehat{FDM}=45^0\)

Xét ΔMFD vuông tại F có \(\widehat{FDM}=45^0\)(cmt)

nên ΔMFD vuông cân tại F

Suy ra: FM=FD(1)

Xét tứ giác AEMF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AFM}=90^0\)

\(\widehat{AEM}=90^0\)

Do đó: AEMF là hình chữ nhật

Suy ra: AE=MF(2)

Từ (1) và (2) suy ra AE=DF

Xét ΔAED vuông tại A và ΔDFC vuông tại F có 

AE=DF

AD=DC

Do đó: ΔAED=ΔDFC

Suy ra: DE=CF

linh phạm
8 tháng 8 2021 lúc 21:25

a, AEMF là hình chữ nhật nên AE=FM

ΔDFM vuông cân tại suy ra FM=DF

⇒AE=DFsuy ra ΔADE=ΔDCF

⇒DE=CF

 

b, Tương tự câu a, dễ thấy AF=BE

⇒ΔABF=ΔBCE

⇒ABF^=BCE^ nên BF vuông góc CE

Gọi là giao điểm của BFvà DE

⇒H là trực tâm của tam giác CEF

Gọi là giao điểm của BCvà MF

CN=DF=AEvà MN=EM=AF

ΔAEF=ΔCMN

⇒ˆAEF=ˆMCN

⇒CM⊥EF

Lưu huỳnh ngọc
Xem chi tiết
Lưu huỳnh ngọc
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 8 2021 lúc 16:54

a) AEMF là hình chữ nhật nên AE=FM

\(\Delta DFM\) vuông cân tại suy ra FM=DF

⇒AE=DF suy ra ΔADE=ΔDCF(c.g.c)

⇒DE=CF

Gọi \(DE\cap CF=H\)

Ta có ΔADE=ΔDCF(c.g.c)

\(\Rightarrow\widehat{ADE}=\widehat{DCF}\)

\(\Rightarrow\widehat{ADE}+\widehat{DFH}=\widehat{DCF}+\widehat{DFH}=90\)

\(\Rightarrow\Delta FHD\) vuông tại H

\(\Rightarrow CF\perp DE\)

Nguyễn Hoàng Minh
9 tháng 8 2021 lúc 17:09

b) Kẻ thêm AM

Ta được AM=EF (AEMF là hcn)

Dễ thấy \(\Delta ADM=\Delta CDM\left(c.g.c\right)\)

(do AD=DC; DM chung; góc ADM = góc CDM)

Nên AM=CM, mà AM=EF

Vậy CM=EF

Gọi \(EM\cap CD=N;CM\cap EF=I\)

Dễ chứng minh \(\Delta AEM=\Delta NMC\left(c.g.c\right)\)

(AE=MN; EM=NC; góc AEM = góc MNC)

Nên góc MAE = góc CMN = góc IME (đối đỉnh)

Mà \(\widehat{MAE}+\widehat{AME}=90\) nên \(\widehat{IME}+\widehat{AME}=90\)

Suy ra \(\widehat{IME}+\widehat{IEM}=90\) (\(\widehat{AME}=\widehat{MEI}\))

\(\RightarrowĐPCM\)

 

minh anh
Xem chi tiết
Lê Quý Lâm
Xem chi tiết
ThanhNghiem
Xem chi tiết
Lovely Sweetheart Prince...
Xem chi tiết
Đặng Anh Thư
Xem chi tiết
Đặng Anh Thư
Xem chi tiết