Cho B \(\in\)N , b > 1
Chứng minh rằng
\(\frac{1}{b^2}>\frac{1}{b}-\frac{1}{b+1}\)
cho ba số nguyên dương 0 nhỏ hơn hoặc bằng a nhỏ hơn hoặc bằng b nho hon hoac bang c nho hon hoac bang 1chứng minh rằng
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...
Bài 1:
a) Cho \(b\in n\):\(b>1\). Chứng minh rằng: \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}-\frac{1}{b-1}-\frac{1}{b}\)(1)
b) Áp dụng công thức (1) chứng minh \(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}+\frac{1}{9^2}< \frac{8}{9}\)
Bài 2. Chứng tỏ
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}< \frac{1}{4}\)
Cho b thuộc N; b>1. Chứng minh rằng: \(\frac{1}{b}-\frac{1}{b+1}
\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b.\left(b+1\right)}=\frac{1}{b.\left(b+1\right)}=\frac{1}{b}.\frac{1}{b+1}\frac{1}{b^2}\)
Vậy \(\frac{1}{b}-\frac{1}{b+1}
Cho a,b,c là các số thực dương và \(n\in N\)*. Chứng minh rằng: \(\frac{a^{n+1}}{b+c}+\frac{b^{n+1}}{c+a}+\frac{c^{n+1}}{a+b}\ge\left(\frac{a^n}{b+c}+\frac{b^n}{c+a}+\frac{c^n}{a+b}\right).\sqrt[n]{\frac{a^n+b^n+c^n}{3}}\)
Câu 1: Chứng minh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{(n-1)n}\) với ∀n∈\(N^*\)
Câu 2: Cho a,b,c là các số thực dương. Chứng minh rằng: \(\frac{a^4+b^4+c^4}{a+b+c}\geq abc\).
Câu 3: Cho các số thực dương a,b,c thỏa mãn \(ab+bc+ca=3\). Chứng minh rằng: \(\sqrt{a^6+b^6+1}+\sqrt{b^6+c^6+1}+\sqrt{c^6+a^6+1}\geq 3\sqrt{3}\)
Câu 4: Cho các số thực không âm a,b,c thỏa mãn \(a+b+c=3\).Chứng minh rằng: \(a^3+b^3+c^3\geq 3\)
Câu 5: Với \(a,b,c>0\) thỏa mãn điều kiện \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=1\). Chứng minh rằng: \(\sqrt\frac{b}{a}+\sqrt\frac{c}{b}+\sqrt\frac{a}{c}\leq 1\)
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Câu 1:
\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(VT=1-\dfrac{1}{n}< 1\) (đpcm)
Cho:\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1998}\) với \(m,n\in N\)
Chứng minh rằng \(m⋮1999\). Nêu bài toán tổng quát
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :
\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)
Quy đồng tất cả 999 phân số này ta được:
\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)
Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)
\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)
Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.
\(\Rightarrow m⋮1999\)
Cho 3 số thực a,b,c \(\ne0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra \(\forall n\in Z\) lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)
mà \(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c
\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)
từ đó được \(a^n=-b^n\)với mọi n lẻ.
Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)
Từ (1)và(2) ta được đpcm
Cho 3 số thực a,b,c \(\ne0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra \(\forall n\in Z\) lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN