Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Việt Nguyễn
Xem chi tiết
pham hong thai
25 tháng 3 2016 lúc 12:09

mình mới học lớp 6 thôi

vương nguyên
25 tháng 3 2016 lúc 12:13

xin lỗi mình ko biết bài này

👁💧👄💧👁
Xem chi tiết
👁💧👄💧👁
16 tháng 3 2019 lúc 11:52

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

Hoàng Phú Minh
Xem chi tiết
Nguyễn Ánh Ngân
Xem chi tiết
Conan Edogawa
29 tháng 7 2015 lúc 9:59

\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b.\left(b+1\right)}=\frac{1}{b.\left(b+1\right)}=\frac{1}{b}.\frac{1}{b+1}\frac{1}{b^2}\)

Vậy \(\frac{1}{b}-\frac{1}{b+1}

Khánh Ngọc
Xem chi tiết
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:34

1. Đề thiếu

2. BĐT cần chứng minh tương đương:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Ta có:

\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)

3.

Ta có:

\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)

\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)

\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)

Lại có:

\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)

\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:37

4.

Ta có:

\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)

\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)

\(\Rightarrow a^3+b^3+c^3\ge3\)

5.

Ta có:

\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)

Nguyễn Việt Lâm
30 tháng 12 2020 lúc 21:39

Câu 1:

\(VT=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(VT=1-\dfrac{1}{n}< 1\) (đpcm)

❄️Lunar Starlight
Xem chi tiết
Princess Starwish
21 tháng 7 2016 lúc 14:56

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :

\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)

Quy đồng tất cả 999 phân số này ta được:

\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)

Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)

\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)

Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.

\(\Rightarrow m⋮1999\)

Vũ Anh Quân
Xem chi tiết
Vị Thần Lang Thang
14 tháng 1 2017 lúc 22:07

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)

\(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c

\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)

từ đó được \(a^n=-b^n\)với mọi n lẻ.

Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)

Từ (1)và(2) ta được đpcm

Vũ Anh Quân
Xem chi tiết
Hoàng Thanh Mai
14 tháng 11 2016 lúc 21:58

sao bn toàn cây khó thế?