Tìm x,y
\(\dfrac{5x+2}{3}=\dfrac{7x-2y}{5}=\dfrac{5y+7}{2-x}\)
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
Câu 9: Thực hiện phép tính:
a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\).
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\).
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\).
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\).
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\).
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\).
a) \(\dfrac{3x-2}{2xy}+\dfrac{7x+2}{2xy}\)
\(=\dfrac{\left(3x-2\right)+\left(7x+2\right)}{2xy}\)
\(=\dfrac{3x-2+7x+2}{2xy}\)
\(=\dfrac{10x}{2xy}\)
\(=\dfrac{5}{y}\)
b) \(\dfrac{5x+y^2}{x^2y}+\dfrac{x^2-5y}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}+\dfrac{x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)+x\left(x^2-5y\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3+x^3-5xy}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
c) \(\dfrac{3x-2}{2xy}-\dfrac{7x-y}{2xy}\)
\(=\dfrac{\left(3x-2\right)-\left(7x-y\right)}{2xy}\)
\(=\dfrac{3x-2-7x+y}{2xy}\)
\(=\dfrac{-2-4x+y}{2xy}\)
d) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\) MTC: \(x^2y^2\)
\(=\dfrac{y\left(5x+y^2\right)}{x^2y^2}-\dfrac{x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{y\left(5x+y^2\right)-x\left(5y-x^2\right)}{x^2y^2}\)
\(=\dfrac{5xy+y^3-5xy+x^3}{x^2y^2}\)
\(=\dfrac{y^3+x^3}{x^2y^2}\)
e) \(\dfrac{16xy}{3x-1}.\dfrac{3-9x}{12xy^3}\)
\(=\dfrac{16xy\left(3-9x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{4\left(3-9x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4\left(9x-3\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-4.3\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-12}{3y^2}\)
\(=\dfrac{-4}{y^2}\)
f) \(\dfrac{8xy}{3x-1}:\dfrac{12xy^3}{5-15x}\)
\(=\dfrac{8xy}{3x-1}.\dfrac{5-15x}{12xy^3}\)
\(=\dfrac{8xy\left(5-15x\right)}{12xy^3\left(3x-1\right)}\)
\(=\dfrac{2\left(5-15x\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2\left(15x-5\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-2.5\left(3x-1\right)}{3y^2\left(3x-1\right)}\)
\(=\dfrac{-10}{3y^2}\)
Làm tính trừ phân thức :
a) \(\dfrac{3x-2}{2xy}-\dfrac{7x-4}{2xy}\)
b) \(\dfrac{3x+5}{4x^3y}-\dfrac{5-15x}{4x^3y}\)
c) \(\dfrac{4x+7}{2x+2}-\dfrac{3x+6}{2x+2}\)
d) \(\dfrac{9x+5}{2\left(x-1\right)\left(x+3\right)^2}-\dfrac{5x-7}{2\left(x-1\right)\left(x+3\right)^2}\)
e) \(\dfrac{xy}{x^2-y^2}-\dfrac{x^2}{y^2-x^2}\)
f) \(\dfrac{5x+y^2}{x^2y}-\dfrac{5y-x^2}{xy^2}\)
g)\(\dfrac{x}{5x+5}-\dfrac{x}{10x-10}\)
h) \(\dfrac{x+9}{x^2-9}-\dfrac{3}{x^2+3x}\)
\(\dfrac{3x-2y}{5}\)=\(\dfrac{2z-5x}{3}\)=\(\dfrac{5y-3z}{2}\) và x+y+z=-50
\(\dfrac{3x-2y}{5}\)=\(\dfrac{2z-5x}{3}\)=\(\dfrac{5y-3z}{2}\)
⇒\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{15x-10y}{25}\)=\(\dfrac{6z-15x}{9}\)=\(\dfrac{10y-6z}{4}\)=\(\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}\)=0
⇒3x-2y=2z-5x=5y-3z=0
* 3x-2y=0⇒3x=2y⇒\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)
* 2z-5x=0⇒2z=5x⇒\(\dfrac{z}{5}\)=\(\dfrac{x}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)=\(\dfrac{x+y+z}{2+3+5}\)=\(\dfrac{-50}{10}\)=-5
\(\dfrac{x}{2}\)=-5⇒x=-10
\(\dfrac{y}{3}\)=-5⇒y=-15
\(\dfrac{z}{5}\)=-5⇒z=-25
Vậy x=-10;y=-15;z=-25
bài 11.rút gọn biểu thức:
\(a,\dfrac{9x^2}{11y^2}:\dfrac{3x}{2y}:\dfrac{6x}{11y}\) \(b,\dfrac{3x+15y}{x^3-y^3}:\dfrac{x+5y}{x-y}\)
\(c,\dfrac{x^2-1}{x^2-4x+4}:\dfrac{x+1}{2-x}\) \(d,\dfrac{5x+10}{x+2}:\dfrac{5y}{x}\)
\(e,\dfrac{2x}{3x-3y}:\dfrac{x^2}{x-y}\) \(f,\dfrac{5x-3}{4x^2y}-\dfrac{x-3}{4x^2y}\)
\(g,\dfrac{3x+10}{x+3}-\dfrac{x+4}{x+3}\) \(h,\dfrac{4}{x-1}+\dfrac{2}{1-x}+\dfrac{x}{x-1}\)
\(i,\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}\) \(j,\dfrac{x-2}{x-6}-\dfrac{x-18}{6-x}+\dfrac{x+2}{x-6}\)
\(k,\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\) \(m,\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(n,\dfrac{3}{x+3}-\dfrac{x-6}{x^2+3x}\) \(p,\dfrac{x+3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\)
f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)
g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)
h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)
n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)
p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)
k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)
m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
Giải các phương trình:
a) \(\dfrac{1}{x-2}\) + 3 = \(\dfrac{3-x}{x-2}\)
b) \(\dfrac{8-x}{x-7}\) - 8 = \(\dfrac{1}{x-7}\)
c) \(\dfrac{1}{x-1}\) + \(\dfrac{2x}{x^2+x+1}\) = \(\dfrac{3x^2}{x^3-1}\)
d) \(\dfrac{y+5}{y^2-5y}\) - \(\dfrac{y-5}{2y^2+10y}\) = \(\dfrac{y+25}{2y^2-50}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
giải hệ pt
a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{7x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
Cho tỉ lệ thức : \(\dfrac{x}{y}\) = \(\dfrac{2}{3}\). Tính giá trị của các biểu thức :
A = \(\dfrac{3x+5y}{7x-2y}\)
B = \(\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\)