Giải pt nghiệm nguyên: x2+(x+y)3=(x+9)2
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
giải pt nghiệm nguyên: x2+2y2+3xy-x-y+3=0
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
giải pt nghiệm nguyên sau: 1, x2+y2-8x+3y=-18
2, x+y+xy =x^2+y^2
3, x2+(x+y)^2= (x+9)^2
4, \(x^4y-x^4+2x^3-2x^2+2x-y=1\)
giải pt nghiệm nguyên dương
x2+x+1 =y2
Chị @Akai Haruma chị giúp e bài này đc k ạ
Bài 4:
\(x^4y-x^4+2x^3-2x^2+2x-y=1\)
\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)
\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)
\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)
\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)
Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.
Với $(2)$
\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)
\(\Rightarrow x-1\vdots x+1\)
\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)
\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)
\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)
Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.
Bài 1:
\(x^2+y^2-8x+3y=-18\)
\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)
\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)
\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)
\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)
\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)
Vì \(x\in\mathbb{Z}\Rightarrow x=4\)
Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)
Vậy.......
Bài 2:
Ta có: \(x+y+xy=x^2+y^2\)
\(\Leftrightarrow 2x^2+2y^2=2x+2y+2xy\)
\(\Leftrightarrow 2x^2+2y^2-2x-2y-2xy=0\)
\(\Leftrightarrow (x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=2\)
\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=2(*)\)
\(\Rightarrow (y-1)^2\leq 2<4\Rightarrow -2< y-1< 2\)
\(\Rightarrow -1< y< 3\Rightarrow y\in\left\{0;1;2\right\}\)
Thay $y$ với các giá trị trên vào pt ban đầu ta thu được:
\(y=0\Rightarrow x=0, x=1\)
\(y=1\Rightarrow x=0; x=2\)
\(y=2\Rightarrow x=1;x=2\)
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải pt nghiệm nguyên:
a)x2+y2=(x-y)(xy+2)+9
b)xy=p(x+y) với p là số nguyên tố
c) x3+y3=2022
Giải PT nghiệm nguyên (x^2+y)(x+y^2)=(x+y)^3 (x,y thuộc N*)
\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)
\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)
TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\)
TH2: \(xy-3x-3y+1=0\)
\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)
Từ đó ta có bảng:
\(x-3\) | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
\(y-3\) | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
\(x\) | 4 | 11 | 5 | 7 | 2 | -5 | 1 | -1 |
\(y\) | 11 | 4 | 7 | 5 | -5 | 2 | -1 | 1 |
Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)
Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:
\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\); \(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)
Giải pt nghiệm nguyên:
\(x^2+y^3=y^6\)
\(4x^2=4y^6-4y^3\)
\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)
\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)
Giải pt nghiệm nguyên:
\(x^3+y^3=5+x^2y+xy^2\)
\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)
\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)
Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương
\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)