C/m bất đẳng thức sau
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
Chứng minh bất đẳng thức
\(a\left(a+b\right)\left(a+b+c\right)+b^2c^2\ge0\)
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^{\text{4}}\right)\)
CM bất đẳng thức sau
\(\sqrt[3]{4\left(a^3+b^3\right)}+\sqrt[3]{4\left(b^3+c^3\right)}\sqrt[3]{4\left(c^3+a^3\right)}\ge2\left(a+b+c\right)\) với \(a,b,c\ge0\)
chứng minh bất đẳng thức :
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2-2\left(a^2+b^2\right)\le0\)
\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow-\left(a-b\right)^2\le0\) ( dấu "=" xảy ra ⇔ a=b )
Bài 3. Cho \(a,b,c\in R\). Chứng minh các bất đẳng thức sau:
\(a,\frac{a^2+3}{\sqrt{a^2+2}}>2\)
\(b,\left(a^5+b^5\right)\left(a+b\right)\ge\left(a^4+b^4\right)\left(a^2+b^2\right)\) \(\left(ab>0\right)\)
\(c,\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)
a)đpcm<=>(a2+3)2>4(a2+2)<=>(a2+1)2>0(lđ)
b)đpcm<=>\(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Theo AM-GM\(\left\{{}\begin{matrix}a^4+b^4+b^4+b^4\ge4a^3b\\b^4+a^4+a^4+a^4\ge4b^3a\end{matrix}\right.\)
=>đpcm. Dấu bằng xảy ra khi a=b
c)AM-GM:\(VT\ge256\left|abcd\right|\ge256abcd\)
Dấu bằng xảy ra khi hai số bằng 2, hai số còn lại bằng -2 hoặc cả 4 số bằng 2 hoặc cả 4 số bằng -2
Chứng minh: Bất đẳng thức: \(4.\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
Biến đổi \(4\left(a^3+b^3\right)-\left(a+b\right)^3=3a^3-3a^2b-3ab^2+3b^3=3a^2\left(a-b\right)-3b^2\left(a-b\right)=\left(3a^2-3b^2\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)^2\ge0\forall a,b>0\).
Từ đó ta có \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\)
chứng minh bất đẳng thức \(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
Làm thông thường thoy; khai triển ra xog chuyển vế
\(\left(a^2+b^2\right)\left(a^4+b^4\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)
\(\Leftrightarrow a^2b^4+a^4b^2\ge2a^3b^3\)
\(\Leftrightarrow a^2b^4+a^4b^2-2a^3b^3\ge0\)
\(\Leftrightarrow a^2b^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a;b\in R\))
Vậy bđt đã đc chứng minh
cảm ơn nhiều nha. chúng ta kết bạn được không?
theo bđt bu-nhi-a cốp-xki thì
(a^3+b^3)^2=(axa^2+bxb^2)^2<=(a^2+b^2)(a^4+b^4)
còn bạn chưa biết thì
<=>a^6+b^6+a^2xb^2(a^2+b^2)>=a^6+b^6+2a^3xb^3
,<=>a^2xb^4+b^2xa^4>=2a^3xb^3
<=>(axb^2-a^2xb)^2>=0(luôn đúng)
Chứng minh bất đẳng thức sau: Với a, b, c > 0
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\)
Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\); \(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).
Cộng từng vế 3 bất đẳng thức trên ta được:
\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
=> đpcm.
Chứng minh bất đẳng thức:
\(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\forall a,b,c\in R\)
Bất đẳng thức cần chứng minh tương đương:
\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)
\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))
\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).
Vậy ta có đpcm.
\(a^8+b^8-a^6b^2-a^2b^6=\left(a^8-a^6b^2\right)+\left(b^8-a^2b^6\right)=a^6\left(a^2-b^2\right)+b^6\left(b^2-a^2\right)=\left(a^6-b^6\right)\left(a^2-b^2\right)\) nên suy ra được như vậy Quỳnh Anh
Cho a,b,c dương
CMR : \(\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ac}{\left(a+b\right)\left(b+c\right)}+\frac{ab}{\left(a+c\right)\left(b+c\right)}\ge\frac{3}{4}\)
Bất đẳng thức này có tên không m.n ?
bất đẳng thức trên tương đương: \(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\ge6abc\)
Theo Cô-si: \(VT\ge6\sqrt[6]{\left(a^2b\right).\left(ab^2\right).\left(b^2c\right).\left(bc^2\right).\left(c^2a\right).\left(ca^2\right)}=6abc\)
Dấu "=' xảy ra khi a=b=c
\(VT=\frac{b^2c^2}{bc\left(a^2+ab+bc+ca\right)}+\frac{c^2a^2}{ca\left(b^2+ab+bc+ca\right)}+\frac{a^2b^2}{ab\left(c^2+ab+bc+ca\right)}\)
ÁP DỤNG BĐT CAUCHY - SCHWARZ TA ĐƯỢC:
=> \(VT\ge\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\)
TA SẼ CHỨNG MINH: \(\frac{\left(ab+bc+ca\right)^2}{a^2b^2+b^2c^2+c^2a^2+3abc\left(a+b+c\right)}\ge\frac{3}{4}\)
<=> \(4\left(ab+bc+ca\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=> \(4\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)+9abc\left(a+b+c\right)\)
<=. \(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
MÀ ĐÂY LẠI LÀ 1 BĐT LUÔN ĐÚNG !!!!!
=> VẬY TA CÓ ĐPCM.
DẤU "=" XẢY RA <=> \(a=b=c\)