1) cho tam giác ABC ,M là trung điểm của BC . Trên tia đối của tia MA lấy điểm D sao cho MD =1/2 MA ,gọi E là trung điểm của AC . Tính các góc trong tam giác BDE
2)Cho ∆ MNP nhọn . Các đường cai NE và PF . CMR góc MEF bằng góc MNP
Cho tam giác ABC có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho\(MA=\frac{MD}{2}\). Gọi E là trung điểm của AC. Tính các góc của tam giác BDE
Đề thiếu hay sao vậy? Giả thiết ít như vậy không thể tính số đo góc với trình độ lớp 7 được
Cho tam giác ABC vuông cân tại A. M là trung điểm BC, trên tia đối tia MA lấy D sao cho MD=MA/2. Gọi E là trung điểm AC. Tính các góc tam giác BDE
Cho tam giác ABC vuông cân ở A. M là trung điểm của BC. Trên tia đối MA lấy D sao cho MD=MA/2. Gọi E là trung điểm cạnh AC. Chứng minh BDE là tam giác vuông cân.
cho tam giác ABC, M là trung điểm cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA. Gọi N là trung điểm cạnh AB. Trên tia đối của tia NC lấy điểm E sao cho NE= NC. CMR
a)tam giác MAC= tam giác MDB
b)AC // BD
c) B là trung điểm đoạn thẳng DE
d) Góc CAE= Góc EBC
cho tam giác ABC (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA=MD. a) Chứng minh tam giác ACM= tam giác DBM. b) Kẻ BE vuông góc với AM tại E. Trên tia MD lấy điểm F sao cho M là trung điểm của EF. Chứng minh CF vuông góc với AD. c) Trên tia FB lấy điểm G sao cho B là trung điểm FG. Gọi H là trung điểm của BE. Chứng minh ba điểm G,H,C thẳng hàng
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh: Tam giác AMB = Tam giác DMC
b) Chứng minh: AB // CD
c) Vẽ AH vuông góc với BC (H thuộc BC). Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh: ME = MD.
d) Gọi K là trung điểm của ED. Chứng minh MK vuông góc với BC.
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
1)tam giác ABC nhọn, trên tia đối AB lấy D sao cho AB=AD, trên tia đối AC lấy điểm M sao cho AC=AM . Tứ giác BCDM là hình j ? why ? 2) Cho tam giác ABC vuông tại A , biết AB=3cm, AC=4cm a) Tính AC b) Gọi M là trung điểm của BC, trên tia đối của MA lấy D sao cho MA=MD. Tứ giác ABCD là hình j ? why ?
Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Kẻ AH vuông góc với BC tại H. Trên tia đối của HA lấy điểm K sao cho HK = HA.
1) Chứng minh Tam giác AMB = Tam giác DMC.
2) Chứng minh Tam giác ABK là tam giác cân.
3) Chứng minh KD//BC
Nhanh lên kiếm tick nào các bẹn!!!!!!!
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.