Bài 2:
Xét tứ giác NFEP có góc NFP=góc NEP=90 độ
nên NFEP là tứ giác nội tiếp
=>góc MEF=góc MNP
Bài 2:
Xét tứ giác NFEP có góc NFP=góc NEP=90 độ
nên NFEP là tứ giác nội tiếp
=>góc MEF=góc MNP
Bài 3. (3,0 điểm) Cho tam giác ABC có ba góc nhọn. Các điểm M, N, P lần lượt là trung điểm của cạnh BC, AB, AC. Gọi O là giao điểm các đường trung trực của tam giác ABC. Trên tia đối của tia MO lấy điểm D sao cho MO = MD. Trên tia đối của tia NO lấy điểm F sao cho NO = NF. Trên tia đối của tia PO lấy điểm E sao cho PO = PF.
a) Chứng minh ∆ANO = ∆BNF, từ đó suy ra AO = BF và AO // BF.
b) Chứng minh hình lục giác AFBDCE có 6 cạnh bằng nhau và 2 trong 6 cạnh đó đôi một song song.
Cho tam giác ABC( AB> AC ), M là trung điểm của BC. AD là phân giác góc BAC ( D thuộc BC). Trên tia đối MA lấy E sao cho MA= ME
a) BE= AC
b) Góc AEB > góc BAE
c) AB + CD> AC +BD
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Bài 1:
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Tính số đo của góc ABD
b) Chứng minh: tam giác ABC= tam giác BAD
c) So sánh độ dài AM và BC
Bài 2: Cho tam giác ABC có BM và CN là hai đường trung tuyến cắt nhau tại G. Trên tia đối của tia MB lấy điểm E sao cho ME = MG. Trên tia đối của tia NC lấy điểm F sao cho NF = NG.
a) Chứng minh: EF = BC
b) Chứng minh: tam giác FAE= tam giác BGC
Bài 3: Cho tam giác ABC cân tại A, có AB = AC = 10cm; BC = 8cm. Gọi G là trọng tâm của tam giác ABC. Tính AG, BG, CG.
Cho tam giác ABC có AB < AC. Kẻ AD vuông góc với BC (D thuộc BC). Lấy M là trung điểm của AD. Trên tia đối của tia MB lấy E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC.
a. CMR: AE = BD
b. So sánh AC và BD.
c. CMR: A, E, F thẳng hàng.
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
cho tam giác ABC có góc A là góc vuông. Trên tia đối tia AB lấy điểm D sao cho AB = AD. Trên tia đối tia AC lấy điếm E sao cho AC = AE. Lấy điểm I là trung điểm của DC. Chứng minh BE = 2AI
Cho tam giác ABC vuông tại A có AB < AC , trung tuyến AM . Trên tia đối của tia MA lấy điểm I sao cho M là trung điểm của AD .
a ) Chứng minh tam giác ABM = tam giác DCM và AB // CD . b ) Chứng minh AD = BC và AM = 1 / 2BC .
c ) Kẻ đường cao AH của tam giác ABC ( H thuộc BC ) . Trên tia AH lấy điểm K sao cho AH = HK . C / m : BH =CK .