tứ giác ABCD có góc A = góc B, BC = CD và DB là tia phân giác của góc D. Chứng minh tứ giác ABCD là hình thang vuông
Tứ giác ABCD có BC = CD và DB là tia phân giác của góc D. chứng minh rằng ABCD là hình thang
ΔBCD có BC = CD (gt) nên ΔBCD cân tại C.
⇒ ∠ B 1 = ∠ D 1 (tính chất tam giác cân)
Mà ∠ D 1 = ∠ D 2 ( Vì DB là tia phân giác của góc D)
Suy ra: ∠ B 1 = ∠ D 2
Do đó: BC // AD (vì có cặp góc ở vị trí so le trong bằng nhau)
Vậy ABCD là hình thang.
tứ giác ABCD có BC = CD và DB là tia phân giác của góc D . chứng minh rằng ABCD là hình thang
ta có BC = DC (Gt) => tam giác BCD cân tại C => góc CDB = góc CBD (hai góc ở đáy)
mặt khác góc CDB = góc BDA ( vì DB là phân giác góc D)
=> góc CBD = góc BDA (cùng = góc CDB )
mà 2 góc này nằm ở vị trí so le trong nên BC // AD => ABCD là hình thang
tứ giác ABCD có BC=CD và DB là tia phân giác của góc D. chứng minh rằng ABCD là hình thang
ta có tam giác BCD cân tại C
=>góc CDB bằng góc CBD
=>BC//AD(goc ADB = gocCBD)
=>DPCM ABCD là hình thang
Tứ giác ABCD có BC = CD và DB là tia phân giác của góc D. Chứng minh rằng ABCD là hình thang ?
Ta có hình vẽ:
Ta có: BC= CD (gt)
=> \(\Delta BCD\) cân tại C
=> góc B1 = góc D1
mà góc D1 = D2 (gt)
=> góc D2 = góc B1
mặt khác 2 góc D2 và B1 đang ở vị trí so le trong
=> AB // CD
=> tứ giác ABCD là hình thang
tứ giác ABCD có BC=CD và DB là tia phân giác của góc D, chứng minh rằng ABCD là hình thang
Vì BC=CD=>Tam giác BCD cân tại C=>\(\widehat{CBD}=\widehat{CDB}\)(1)
Vì DB là tia phân giác của góc D => \(\widehat{CDB}=\widehat{ADB}\)(2)
Từ (1) và (2) => \(\widehat{CBD}=\widehat{ADB}\),mà 2 góc ở vị trí so le trong
=> AD song song với BC.
=> ABCD là hình thang.
Cho tứ giác ABCD có BC=CD và DB là tia phân giác góc D. Chứng minh rằng ABCD là hình thang
B1, Cho tứ giác ABCD có các tia p/giác của góc A và góc D vuông góc với nhau.Chứng minh:
a)ABCD là hình thang
b) Hai tia phân giác của góc C và D vuông góc với nhau
B2, Cho hình thang ABCD có đáy AB=40,CD=80, cạnh bên BC=50,AD=30. Chứng minh ABCD là hình thang vuông
B3.Cho tam giác MNP vuông cân ở M, đường thẳng d bất kỳ qua M ( d không cắt NP). Trên d lấy A,B sao cho MA=PB vàMB=NA. Tứ giác ANPB là hình gì?
B4. Cho ABCD là hình thang có BD là phân giác góc D và AE là p/giác góc A ( E nằm trên CD). Biết AE//BC và Olà giao điểm của AE và DB. Chứng minh:
a) AE vuông góc BD
b) AD//BE và AD=BE
c) E là trung điểm DC
d) Tứ giác BCEO là hình gì?
e) Biết góc BEC=180 độ. Tính các góc ABCD
Mong mọi người giúp với a.! Mình cảm ơn nhiềuuuuuuuuuuuuuu... lắm! :)
Cho tứ giác abcd có góc a = góc b và BC= CD và db là tia phân giác của góc d cmr tứ giác abcd là hình thang vuông và ac2 + ad2 = bc2+ bd2
Cho tứ giác ABCD có góc A=Góc D, BC=AD và DB là phân giác góc D. Chứng minh :
a) tứ giác ABCD là hình thang vuông
b) AC^2+AD^2=DC^2+BD^2
Tứ giác ABCD có BC=CD và DB là tia phân giác của góc D.Chứng minh rằng ABCD là hình thang
CB=CD
=>góc CBD=góc CDB
mà góc ADB=góc CDB
nên góc CBD=góc ADB
=>AD//BC
=>ABCD là hình thang