Cho tam giác ABC vuông tại A, đường cao AH, tia phân giác ở góc B cắt AH tại Y và AC tại D. Chứng minh : HY nhân với cả CD = AD nhân AY.
cho tam giác ABC vuông tại A đường cao AH a, đường phân giác góc ABC cắt AC tại D,DH tại E chứng minh AD nhân AE =DC nhân EH
Các bạn giải câu d nhé:
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Tia phân giác góc HAC cắt BC tại E. Vẽ EK vuông góc với AC tại K.
a) Chứng minh rằng: tam giác AHE = tam giác AKE và AH=AK
b) KH cắt AE tại I. Chứng minh rằng: AE vuông góc HK từ đó so sánh KE và HI.
c) AH cắt KE tại D. Chứng minh AE vuông góc CD.
d) Tia phân giác góc ABC cắt AE tại M. Chứng minh rằng BM//CD.
d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)).
suy ra \(AE\perp CD\).
Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).
Ta có:
\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))
suy ra \(\widehat{CAE}=\widehat{ABM}\)
mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)
do đó \(BM\perp AE\).
Từ đây ta có đpcm.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH.
a) Chứng minh tam giác HBA ~ tam giác ABC
b) Tính BC? ,AH?
c) Tia phân giác của góc C cắt AH tại E, AB tại D. Tia phân giác góc BAH cắt CD tại F, BH tại K. Chứng minh DK // AH rồi chứng minh tam giác AFE ~ tam giác CHE.
Cho tam giác ABC vuông tại A (AB < AC). Vẽ đường cao AH, H thuộc BC. Lấy điểm D đối xứng với B qua H.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA.
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH. CD = CE. AD.
c) Chứng minh tam giác HDE đồng dạng với tam giác ADC.
d) AH cắt CE tại F. Chứng minh tứ giác ABFD là hình thoi.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Xét ΔAHD vuông tại H và ΔCED vuông tại E có
\(\widehat{ADH}=\widehat{CDE}\)(hai góc đối đỉnh)
Do đó: ΔAHD~ΔCED
=>\(\dfrac{AH}{CE}=\dfrac{DA}{DC}\)
=>\(AH\cdot DC=CE\cdot AD\)
c: Ta có: ΔAHD~ΔCED
=>\(\dfrac{DA}{DC}=\dfrac{DH}{DE}\)
=>\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
Xét ΔDAC và ΔDHE có
\(\dfrac{DA}{DH}=\dfrac{DC}{DE}\)
\(\widehat{ADC}=\widehat{HDE}\)(hai góc đối đỉnh)
Do đó: ΔDAC~ΔDHE
d: Xét ΔCAF có
AE,CH là các đường cao
AE cắt CH tại D
Do đó: D là trực tâm của ΔCAF
=>DF\(\perp\)AC
mà AB\(\perp\)AC
nên DF//AB
Xét ΔHDF vuông tại H và ΔHBA vuông tại H có
HD=HB
\(\widehat{HDF}=\widehat{HBA}\)(hai góc so le trong, DF//AB)
Do đó: ΔHDF=ΔHBA
=>HF=HA
=>H là trung điểm của AF
Xét tứ giác ABFD có
H là trung điểm chung của AF và BD
=>ABFD là hình bình hành
Hình bình hành ABFD có AF\(\perp\)BD
nên ABFD là hình thoi
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
1 phần thôi nhé
Nối BE, Gọi P là giao điểm của AD với BE.
Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).
Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)
Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)
Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác). (4)
Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB
<=> BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC
<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5)
Chú ý: Ta cm được: CA=CD (biến đổi góc).
Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)
=> DpCm.
Cho ABC vuông tại A,AB<AC , đường cao AH . Trên cạnh
AC , lấy điểm E sao cho AH=AE . Qua E kẻ đường thẳng vuông góc với
AC , cắt cạnh BC tại D .
a) Chứng minh tam giác AHD = tam giác AHE và AD là tia phân giác của tam giác HAC
b) Tia ED cắt tia AH tại K . Chứng minh KCD cân.
c) So sánh HK và AK
d) Gọi I là trung điểm của KC , chứng minh ba điểm A,D,I thẳng hàng.
Bài 3: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH.
a) Chứng minh: ∆ABH ∆CBA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại E, tia phân giác của góc AHC cắt AC tại D. Chứng minh: AD = AE
Bài 4: Cho tam giác ABC vuông tại A, (AB < AC), đường cao AH.
a) Chứng minh: ∆ACH ∆BCA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại D, tia phân giác của góc AHC cắt AC tại E. Chứng minh: AD = AE
4:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc ACH chung
=>ΔACH đồng dạng với ΔBCA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: góc EHD=góc EHA+góc DHA
=1/2*góc AHB+1/2*góc AHC=90 độ
góc EAD+góc EHD=180 độ
=>EADH nội tiếp
=>góc AED=góc AHD và góc ADE=góc AHE
mà góc AHD=góc AHE=45 độ
nên góc AED=góc ADE
=>AD=AE
Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của góc ABC cắt AH ở D và cắt AC ở E. a) Chứng minh : AB.HD = AE.HB
Xét tam giacs ABE và HBD ta có:
Góc BAE = Góc BHD (=90^0)
Góc ABE = Góc HBD (GT)
=> Tam giacs ABE đồng dạng với tam giác HBD
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{AE}{HD}\)
=> AB.HD = AE.HB
1.cho tam giác ABC có AB<AC<BC . Tia phân giác của góc A cắt BC tại D , tia phân giác của góc B cắt AC tại E . Hai tia phân giác AD và BE cắt nhau tại I . So sánh BD và CD
2.cho tam giác ABC có AB<AC . Tia phân giác cắt BC ở D . Kẻ AH vuông góc với BC . Gọi M là trung điểm của BC . Chứng minh rằng tia AD nằm giữa hai tia AH và AM
1.Lấy F trên AC sao cho AB = AF mà AB < AC => AF < AC => F nằm giữa A,C
\(\Delta ADB,\Delta ADF\)có AD chung ; AB = AF ;\(\widehat{A_1}=\widehat{A_2}\)(AD là phân giác góc BAC)\(\Rightarrow\Delta ADB=\Delta ADF\left(c.g.c\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}\); DB = DF mà\(\widehat{F_1}>\widehat{D_1};\widehat{D_2}>\widehat{C}\)(\(\widehat{F_1};\widehat{D_1}\)lần lượt là góc ngoài\(\Delta ADF,\Delta ADC\))nên\(\widehat{F_1}>\widehat{C}\)
\(\Delta DFC\)có\(\widehat{F_1}>\widehat{C}\)nên DC > DF = DB.Vậy BD < CD
2.Theo chứng minh câu 1,ta được BD < CD
\(\Rightarrow BC=BD+CD=2BD+CD-BD\Rightarrow2BD< BC\Rightarrow BD< \frac{BC}{2}\left(=BM\right)\)
=> D nằm giữa B,M => AD nằm giữa AB,AM (1)
\(\Delta ABC\)có AB < AC nên\(\widehat{B}>\widehat{C}\)mà\(\widehat{BAH}=90^0-\widehat{B};\widehat{CAH}=90^0-\widehat{C}\)(vì\(\Delta AHB,\Delta AHC\)vuông tại H)
\(\Rightarrow\widehat{BAH}< \widehat{CAH}\)
\(\Rightarrow\widehat{BAC}=\widehat{BAH}+\widehat{CAH}=2\widehat{BAH}+\widehat{CAH}-\widehat{BAH}\Rightarrow2\widehat{BAH}< \widehat{BAC}\Rightarrow\widehat{BAH}< \frac{\widehat{BAC}}{2}\left(=\widehat{BAD}\right)\)
=> AH nằm giữa AB,AD (2).Từ (1) và (2),ta có đpcm