Những câu hỏi liên quan
Phạm Đức Nam Phương
Xem chi tiết
Thắng Nguyễn
8 tháng 5 2018 lúc 17:16

Bài này đăng nhiều rồi bạn vào câu hỏi tương tự tìm

Pham Quoc Cuong
8 tháng 5 2018 lúc 22:12

Sử dụng kĩ thuật Cauchy ngược dấu

Ta có: \(\frac{a+1}{b^2+1}=\frac{ab^2+a+b^2+1-ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b\left(a+1\right)}{2}\) 

Tương tự \(\frac{b+1}{c^2+1}\ge b+1-\frac{c\left(b+1\right)}{2}\)

               \(\frac{c+1}{a^2+1}\ge c+1-\frac{a\left(c+1\right)}{2}\) 

\(\Rightarrow VT\ge3-\frac{a+b+c-ab-bc-ca}{2}\ge3\)

Dấu "=" xảy ra khi a=b=c=1

Duong Quang Dat
Xem chi tiết
Pikachu
Xem chi tiết
Ngô Chi Lan
12 tháng 7 2020 lúc 18:22

Bài làm:

Áp dụng Cauchy dạng cộng mẫu ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\left(1\right)\)

\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{9}{b+2c}\left(2\right)\)

\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\ge\frac{9}{c+2a}\left(3\right)\)

Cộng vế 3 bất đẳng thức (1);(2); và (3) ta được:

\(3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi: \(a=b=c\)

Học tốt!!!!

Khách vãng lai đã xóa
việt nguyễn phi
Xem chi tiết
Thắng Nguyễn
30 tháng 5 2018 lúc 18:52

sai đề ?

việt nguyễn phi
1 tháng 6 2018 lúc 19:45

đúng bạn ơi

việt nguyễn phi
1 tháng 6 2018 lúc 19:46

bé hơn hoặc bằng nhá các bạn

Phạm Thùy Dung
Xem chi tiết
Kudo Shinichi
6 tháng 10 2019 lúc 16:35

 a+b+c+ab+bc+ac = 6abc \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Cmtt : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc};\frac{1}{c^2}+\frac{1}{a^2}\ge\frac{2}{ca}\)

Ta có : \(\left(\frac{1}{a}-1\right)^2\ge0\Leftrightarrow\frac{1}{a^2}+1\ge\frac{2}{a}\)

Cmtt : \(\frac{1}{b^2}+1\ge\frac{2}{b};\frac{1}{c^2}+1\ge\frac{2}{c}\)

\(3A+3\ge2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2.6=12\)

\(\Leftrightarrow A+1\ge4\Leftrightarrow A\ge3\left(đpcm\right)\)

Chúc bạn học tốt !!!

Nguyễn Phan Thục Trinh
Xem chi tiết
Đào Thu Hòa 2
8 tháng 7 2019 lúc 8:12

https://olm.vn/hoi-dap/detail/223126660207.html?pos=512235459592

Giờ mình mới để ý , câu này có trong chuyên đề : Bất đẳng thức Cauchy (Cô si) của cô Nguyễn Linh Chi (ở phần dạng toán và hướng dẫn giải) (mình đã inbox link cho bạn rồi)

Còn đề bạn viết sai rồi nhé

Trịnh Tiến Đạt
Xem chi tiết
Trí Tiên亗
5 tháng 2 2020 lúc 15:44

1) Trước hết ta đi chứng minh BĐT : \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)  với \(a,b>0\) (1) 

Thật vậy : BĐT  (1) \(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)  ( luôn đúng )

Vì vậy BĐT (1) đúng.

Áp dụng vào bài toán ta có:

\(\frac{1}{4}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\right)\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{c}\right)\)

                                                                 \(=\frac{1}{4}\cdot\left[2.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Vậy ta có điều phải chứng minh !

Khách vãng lai đã xóa
Nguyễn Thị Mát
5 tháng 2 2020 lúc 17:33

Bài 1 : 

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\hept{\begin{cases}\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\\\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\\\frac{1}{a+c}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{c}\right)\end{cases}}\)

Cộng theo từng vế 

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{4}\left(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\right)\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm)

Khách vãng lai đã xóa
Nguyễn Thị Mát
6 tháng 2 2020 lúc 18:24

2 )

Áp dụng bất đẳng thức Cacuchy - Schwarz :
\(VT=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\left(1\right)\)

Vì \(a+b+c=1\)nên 

\(a^2+b^2+c^2=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(=\left(a^3++ab^2+b^3+bc^2+c^3+ca^2\right)+\left(a^2b+b^2c+c^2a\right)\)

Áp dụng AM - GM 

\(a^3+ab^2\ge2a^2b\). Tương tự cho 2 cặp còn lại suy ra 

\(a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3\left(a^2+b^2+c^2\right)\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)

Khách vãng lai đã xóa
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
26 tháng 8 2015 lúc 20:31

Theo bất đẳng thức Cô-Si ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}=\frac{a+b}{ab}+\frac{2}{a+b}=a+b+\frac{2}{a+b}=\frac{a+b}{2}+\left(\frac{a+b}{2}+\frac{2}{a+b}\right)\)

\(\ge\sqrt{ab}+2\sqrt{\frac{a+b}{2}\cdot\frac{2}{a+b}}=1+2=3.\)   (ĐPCM)

White Boy
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 10 2016 lúc 11:31

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta được

\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge\frac{9}{2\left(a+2b\right)}\)

\(\frac{1}{2b}+\frac{1}{2c}+\frac{1}{2c}\ge\frac{9}{2\left(b+2c\right)}\)

\(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế : 

\(\frac{3}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{9}{2}\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)

Dấu "=" xảy ra khi a = b = c (a,b,c>0)

tth_new
2 tháng 6 2018 lúc 8:22

The BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\). Thật vậy, ta có:

Áp dụng BĐT Bunhiacopxki, ta có:

\(\left[\left(\frac{a}{\sqrt{x}}\right)^2+\left(\frac{b}{\sqrt{y}}\right)^2+\left(\frac{c}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)

\(\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\left(x+y+z\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)\ge\frac{\left(a+b+c\right)^2}{x+y+z}\). Thay a,b,c bởi 1 , ta được

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{9}{x+y+z}\)

Áp dụng vào ta có: \(3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\ge3.\frac{9}{3a+3b+3c}=3.\frac{9}{3\left(a+b+c\right)}=3.\frac{3}{a+b+c}\)

\(=\frac{9}{a+b+c}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{a+b+c}\)(2)

Vì (1) bằng (2) nên ta có đpcm . Dấu = xảy ra khi và chỉ khi a=b=c (a,b,c > 0)

Lê Tài Bảo Châu
27 tháng 11 2019 lúc 21:44

Hoàng Lê Bảo Ngọc

BĐt đầu tiên đó cần phải chứng minh

Khách vãng lai đã xóa