Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, góc B=45 độ, HE là phân giác góc AHB(E thuộc AB), HF vuông góc với HE( F thuộc AC).CM
a, HF song song AB, HE song song AC
b, HF là phân giác góc AHC
c, Tìm các góc nhọn còn lại trong hình
cho tam giác ABC cân tại A.tia AH là tia phân giác của góc BAC(H thuộc BC).Kẻ EH vuông góc với AB,HF vuông góc với AC( E thuộc AB,F thuộc AC)
a) CMR: HE=HF
b)CMR: EF song song BC
C) biết AB=15cm,BC=18cm.tính AH
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H, kẻ EH vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
a) CM: tam giác AHB = tam giác AHC
b) Cho AH= 6cm, AC = 10cm. Tính HB,HC
c) CM: HE=HF
d) CM: EF song song với BC
e) CM: HA là tia phân giác của góc EHF
f) Gọi I là giao điểm của EF. Chứng minh: A,I,H thẳng hàng.
XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ
AB=AC(GT)
AH CHUNG
GÓC AHB = GÓC AHC
=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)
C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ
AH CHUNG
GÓC AEH=GÓC AFH =90*
A1=A2
=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)
=>HE=HF (CẠNH TƯƠNG ỨNG)
cho tam giác abc cân tại a gọi h là trung điểm của bc
a, Chứng minh AH vuông góc với BC
b, Kẻ HE vuong góc với AB tại E ; HF vuông góc với AC tại F . Chứng minh HE = HF
c, Chứng minh tam giác AEF là tam giác cân
d, Chứng minh EF song song BC
Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC tại H a) chứng minh: tam giác AHB = AHC b) từ H vẽ HE vuông AB tại E, HF vuông AC tại F. Chứng minh HE = HF c) Qua H kẻ đường thẳng song song AB cắt AC tại K . chứng minh K là trung điểm AC
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC .(h thuộc bc)
a. Chứng minh: tam giác ahb= tam giác ahc.
b. Từ điểm H kẻ HK vuông góc với AB tại K, HF vuông góc với AC tại F.
Chứng minh: hk=hf.
c. Chứng minh:kf song song bc
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔAKH vuông tại K và ΔAFH vuông tại F có
AH chung
\(\widehat{KAH}=\widehat{FAH}\)
Do đó: ΔAKH=ΔAFH
Suy ra: HK=HF
c: Xét ΔABC có AK/AB=AF/AC
nên KF//BC
Cho tam giác ABC cân tại A ( AB=AC) .Kẻ AH vuông góc BC (H thuộc BC ) ,HE vuông góc AB , HF vuông góc AC .
Chứng minh :
a) Tam giác AHB = tam giác AHC
b) Tam giác HEB = tam giác HFC
c) AH vuông góc EF
a, Xét ∆ ABH và ∆AHC có:
+AH chung
+ ∠AHB= ∠AHC(=90*)
+AB=AC(△ ABC cân)
=> △AHB=△AHC(ch-cgv)
=>BH=HC(2 cạnh tương ứng)
b) Xét △ HEB và △HFC có:
+ ∠BEH= ∠CFH(=90*)
+HB=HC(cmt)
+ ∠B= ∠C(△ABC cân)
=> △HEB=△HFC(ch-cgnhon)
Cho đường tròn (o) ngoại tiếp tam giác nhọn ABC.Vẽ đường cao AH (H thuộc cạnh BC).Vẽ HE vuông góc với AB (E thuộc AB),HF vuông góc với AC (F thuộc AC).
a) CMR: AEHF là tứ giác nội tiếp
b) CMR: góc ABC + góc HFE = 90o
c) Gọi M là giao điểm của BF và HE,N là giao điểm của HF và CE.
Chứng minh rằng MN song song với BC
Mình cần gấp giúp mình với!!!
Cho: Tam giác ABC cân tại A (AB=AC), AH vuông góc với BC
a, CMR tam giác AHB = Tam giác AHC
B, HB=HC, góc BAH = góc CAH
c, Từ H kẻ HE vuông gó với AB; HF vuông góc với HC
Tìm các cặp tam giác vuông có trên hình vẽ? Hãy CM.
d, CMR EF song song với BC
Cho: Tam giác ABC cân tại A (AB=AC), AH vuông góc với BC
a, CMR tam giác AHB = Tam giác AHC
B, HB=HC, góc BAH = góc CAH
c, Từ H kẻ HE vuông gó với AB; HF vuông góc với HC
Tìm các cặp tam giác vuông có trên hình vẽ? Hãy CM.
d, CMR EF song song với BC
Xét tgAHB và tg AHC có:
+AB=AC(gt)
+AH là cạnh chung
+góc BHA=góc CHA
=>tgAHB=tg AHC(c-g-c)
=>HB=HC,góc BAH=góc CAH
Các cặp tg vuông là:
BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)
Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF
=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO
=> tgAEK và tg AFK là cặp tg vuông(c-g-c)
=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)
=>tg AEH và tg AFH là cặp tg vuông(c-g-c)
Và cuối cùng là tg ABH và tg ACH(c-g-c)
+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)
a, Xét tam giác AHB và tam giác AHC có:
AH chung
AB=AC (tam giác ABC cân tại A)
Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)
b,từ CMT: ta có:
HB=HC
Góc BAH= góc CAH
c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)
tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)
tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)
d,sorry bạn, câu này mik ko làm đc
a) Xét \(\Delta\)AHB và \(\Delta\)AHC có: \(\hept{\begin{cases}AHchung\\\widehat{ABC}=\widehat{ACB}\\AB=AC\end{cases}\Rightarrow\Delta AHB=\Delta AHC}\)
a) Có \(\Delta AHB=\Delta AHC\left(cmt\right)\)
=> HB=HC (2 cạnh tương ứng)
và \(\widehat{BAH}=\widehat{CAH}\)(2 góc tương ứng)