Tính diện tích tứ giác ABCD có AC = m, BD = n và góc nhọn tạo bởi hai đường chéo AC và BD là α.
Tính diện tích tứ giác ABCD, biết độ dài 2 đường chéo AC=m, BD=n, và góc nhọn tạo bởi 2 đường chéo bằng a
Tính diện tích của một tứ giác lồi ABCD có các đường chéo AC = m, BD = n và tạo với nhau một góc nhọn \(\alpha\)
Đố: Cho tứ giác ABCD có \(AC=m,BD=n\). Góc nhọn tạo bởi hai đường chéo bằng \(\alpha\). Chứng minh rằng:
\(S_{ABCD}=\frac{1}{2}mn\sin\alpha\). Từ đó hãy giải thích tại sao tứ giác có hai đường chéo vuông góc với nhau thì có diện tích bằng nửa tích hai đường chéo.
Có hình vẽ :
Dễ thấy SABCD = \(\frac{1}{2}\left(AH+CK\right).BD\)
mà lại có \(AH=AO.sin\alpha\) ; \(CK=OC.sin\alpha\)
=> SABCD = \(\frac{1}{2}\sin\alpha.AC.BD\)
Khi 2 đường chéo vuông góc với nhau thì
\(H\equiv O\equiv K\Rightarrow AH=AO=CK\)
hay \(sin\alpha=1\)
Khi đó \(S_{ABCD}=\frac{1}{2}mn\)(đpcm)
cho tứ giác ABCD có đường chéo AC vuông góc với đường chéo BD biết diện tích tứ giác ABCD bằng 15m2 và AC=6m. tính BD.
Cho tứ giác ABCD có AC = 10cm, BD = 12cm, hai đường chéo AC và BD cắt nhau tại O. Biết góc AOB = 30°. Tính diện tích ABCD.
Cho HCN ABCD có :
2 đường chéo AC và BD ; mỗi đường chéo bằng 8cm
góc nhọn tạo bởi 2 đường chéo đó bằng 30 độ
Tính diện tích HCN ABCD.
Cho tứ giác ABCD
có AC = 12 ; BD = 17
Tính diện tích ABCD biết góc tạo bởi AC và BD là 30 độ.
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Biết AC = 6cm, BD = 8cm. Gọi M, N, P, Q theo thứ tự là trung điểm các cạnh AB, BC, CD, DA. Gọi X, Y, Z, T theo thứ tự là trung điểm các cạnh MN, NP, PQ, QM. Tính diện tích của tứ giác XYZT.
Kẻ đường chéo MP và NQ
Trong △ MNP ta có:
X là trung điểm của MN
Y là trung điểm của NP
nên XY là đường trung bình của △ MNP
⇒ XY // MP và XY = 1/2 MP (tính chất đường trung bình của tam giác) (3)
Trong △ QMP ta có:
T là trung điểm của QM
Z là trung điểm của QP
nên TZ là đường trung bình của △ QMP
⇒ TZ // MP và TZ = 1/2 MP (tính chất đường trung bình của tam giác) (4)
Từ (3) và (4) suy ra: XY // TZ và XY = TZ nên tứ giác XYZT là hình bình hành.
Trong △ MNQ ta có XT là đường trung bình
⇒ XT = 1/2 QN (tính chất đường trung bình của tam giác)
Tứ giác MNPQ là hình chữ nhật ⇒ MP = NQ
Suy ra: XT = XY. Vậy tứ giác XYZT là hình thoi
S X Y Z T = 1/2 XZ. TY
mà XZ = MQ = 1/2 BD = 1/2. 8 = 4 (cm);
TY = MN = 1/2 AC = 1/2 .6 =3 (cm)
Vậy : S X Y Z T = 1/2. 3. 4 = 6( c m 2 )
Cho tứ giác ABCD có AC = 10cm , BD = 12cm , hai đường chéo AC và BD cắt nhau tại O . Biết AOB = 30độ. Tính diện tích ABCD
Cho tứ giác ABCD gọi góc nhọn tạo bởi 2 đường chéo là α, diện tích của tứ giác là S. CMR: . \(S=\frac{1}{2}.AC.BD.\sin\alpha\)Từ đó suy ra diện tích của tứ giác có hai đường chéo vuông góc