Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Vũ Quỳnh Dao
Xem chi tiết
Đạt Nguyễn
24 tháng 5 2019 lúc 21:20

ĐKXĐ :  \(-4\le x\le4\)

TA CÓ : \(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)

\(\Leftrightarrow\left[\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\right]\left(\sqrt{4-x}+2\right)=2x\left(\sqrt{x+4}+2\right)\)

\(\Leftrightarrow\left[x+4-4\right]\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left(\sqrt{4-x}+2\right)-2x\left(\sqrt{x+4}+2\right)=0\)

\(\Leftrightarrow x\left[\sqrt{4-x}+2-2\sqrt{x+4}-4\right]=0\)

\(\Leftrightarrow x=0\)HOẶC  \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

VỚI \(\sqrt{4-x}-2\sqrt{x+4}-2=0\)

\(\Leftrightarrow\sqrt{4-x}-2=2\sqrt{x+4}\)

\(\Leftrightarrow4-x+4-4\sqrt{4-x}=4x+16\)

\(\Leftrightarrow8-x-4x-16=4\sqrt{4-x}\)

\(\Leftrightarrow-5x-8=4\sqrt{4-x}\)ĐK : \(-4\le x\le\frac{-8}{5}\)

\(\Leftrightarrow\left[-\left(5x+8\right)\right]^2=16\left(4-x\right)\)

\(\Leftrightarrow25x^2+64+80x=64-16x\)

\(\Leftrightarrow25x^2+96x=0\Leftrightarrow x\left(25x+96\right)=0\)

\(\Leftrightarrow x=0\)HOẶC \(x=\frac{-96}{25}\)(THỎA MÃN ĐK )                                                                               

                                                                                               VẬY PT CÓ 2 NGHIỆM \(x\in\left[0;\frac{-96}{25}\right]\)

P/S : CÁCH CỦA MÌNH KHÁ DÀI VÀ CHI TIẾT QUÁ . BẠN CÓ THỂ THAM KHẢO CÁCH KHÁC NHANH HƠN :>

cao trung hieu
Xem chi tiết
Nguyễn Thái Sơn
Xem chi tiết
Akai Haruma
13 tháng 7 2020 lúc 12:12

Lời giải:

ĐK: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow \sqrt{2x+3}=2x^2-5x$

$\Leftrightarrow \sqrt{2x+3}-3=2x^2-5x-3$

$\Leftrightarrow \frac{2(x-3)}{\sqrt{2x+3}+3}=(2x+1)(x-3)$

$\Leftrightarrow (x-3)\left[\frac{2}{\sqrt{2x+3}+3}-(2x+1)\right]=0$

Xảy ra 2 TH:

TH1: $x-3=0\Rightarrow x=3$ (thỏa mãn)

TH2: $\frac{2}{\sqrt{2x+3}+3}=2x+1$

Đặt $\sqrt{2x+3}=t(t\geq 0)$ thì pt trở thành: \frac{2}{t+3}=t^2-2$

$\Leftrightarrow 2=(t^2-2)(t+3)\Leftrightarrow t^3+3t^2-2t-8=0$

$\Leftrightarrow (t+2)(t^2+t-4)=0$

Do $t\geq 0$ nên $t=\frac{-1+\sqrt{17}}{2}$

$\Leftrightarrow \sqrt{2x+3}=\frac{-1+\sqrt{17}}{2}\Leftrightarrow x=\frac{3-\sqrt{17}}{4}$ (thỏa mãn)

Vậy........

nguyen kim chi
Xem chi tiết
Mr Lazy
18 tháng 7 2015 lúc 21:56

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)

\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)

\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)

\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)

\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)

Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)

 

Phạm Đức Minh
Xem chi tiết
nguyen ba gia bao
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Nguyet Cat
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết
Quoc Tran Anh Le
7 tháng 7 2019 lúc 21:38

\(2\sqrt[3]{\left(x+2\right)^2}-\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Leftrightarrow\sqrt[3]{\left(x-2\right)^2}=\sqrt[3]{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2=x^2-4\)

\(\Leftrightarrow x^2-4x+4-x^2+4=0\)

\(\Leftrightarrow-4x+8=0\)

\(\Leftrightarrow x=2\)

Vũ Huy Hoàng
17 tháng 7 2019 lúc 17:11

Đặt \(\sqrt[3]{x+2}=a;\sqrt[3]{x-2}=b;\) ta có:

\(2a^2-b^2=ab\)\(2a^2-ab-b^2=0\)

\(\Leftrightarrow2a^2+ab-2ab-b^2=0\)

\(\left(2a+b\right)\left(a-b\right)=0\)

\(\left[{}\begin{matrix}2\sqrt[3]{x+2}=-\sqrt[3]{x-2}\\\sqrt[3]{x-2}=\sqrt[3]{x+2}\end{matrix}\right.\)\(x=-\frac{14}{9}\)