Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thái Sơn

1) giai phuong trinh:

a) \(x+\sqrt{2x+3}=2x\left(x-2\right)\)

Akai Haruma
13 tháng 7 2020 lúc 12:12

Lời giải:

ĐK: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow \sqrt{2x+3}=2x^2-5x$

$\Leftrightarrow \sqrt{2x+3}-3=2x^2-5x-3$

$\Leftrightarrow \frac{2(x-3)}{\sqrt{2x+3}+3}=(2x+1)(x-3)$

$\Leftrightarrow (x-3)\left[\frac{2}{\sqrt{2x+3}+3}-(2x+1)\right]=0$

Xảy ra 2 TH:

TH1: $x-3=0\Rightarrow x=3$ (thỏa mãn)

TH2: $\frac{2}{\sqrt{2x+3}+3}=2x+1$

Đặt $\sqrt{2x+3}=t(t\geq 0)$ thì pt trở thành: \frac{2}{t+3}=t^2-2$

$\Leftrightarrow 2=(t^2-2)(t+3)\Leftrightarrow t^3+3t^2-2t-8=0$

$\Leftrightarrow (t+2)(t^2+t-4)=0$

Do $t\geq 0$ nên $t=\frac{-1+\sqrt{17}}{2}$

$\Leftrightarrow \sqrt{2x+3}=\frac{-1+\sqrt{17}}{2}\Leftrightarrow x=\frac{3-\sqrt{17}}{4}$ (thỏa mãn)

Vậy........


Các câu hỏi tương tự
LEGGO
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
adfghjkl
Xem chi tiết
__HeNry__
Xem chi tiết
Đặng Thế Hùng
Xem chi tiết
Kathy Nguyễn
Xem chi tiết
adfghjkl
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết
Vo Thi Minh Dao
Xem chi tiết