Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Tuấn Lâm
Xem chi tiết
Nguyễn Gia Hy
Xem chi tiết
alibaba nguyễn
25 tháng 7 2017 lúc 11:09

Ta có

\(\hept{\begin{cases}\sqrt{2008}+\sqrt{2005}< \sqrt{2015}+\sqrt{2009}\left(1\right)\\\sqrt{2010}+\sqrt{2007}< \sqrt{2015}+\sqrt{2009}\left(2\right)\end{cases}}\)

\(\Rightarrow\frac{1}{\sqrt{2008}+\sqrt{2005}}+\frac{1}{\sqrt{2010}+\sqrt{2007}}>\frac{2}{\sqrt{2015}+\sqrt{2009}}\)

\(\Leftrightarrow\frac{\sqrt{2008}-\sqrt{2005}}{3}+\frac{\sqrt{2010}-\sqrt{2007}}{3}>\frac{\sqrt{2015}-\sqrt{2009}}{3}\)

\(\Leftrightarrow\sqrt{2008}+\sqrt{2009}+\sqrt{2010}>\sqrt{2005}+\sqrt{2007}+\sqrt{2015}\)

Anh
25 tháng 7 2017 lúc 10:39

A=√2008+√2009+√2010A=2008+2009+2010 và B=√2005+√2007+√2015

k và kb với mình nha !!!

Nguyễn Thị Yến Vy
25 tháng 7 2017 lúc 11:03

tính cụ thể từng cái ra

Cao Huy Hiếu
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 9 2019 lúc 8:53

\(A-B=\sqrt{2009}-\sqrt{2007}+\sqrt{2010}-\sqrt{2008}+\sqrt{2011}-\sqrt{2015}\)

\(=\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}\)

Ta có \(\left\{{}\begin{matrix}\sqrt{2009}+\sqrt{2007}< \sqrt{2011}+\sqrt{2015}\\\sqrt{2010}+\sqrt{2008}< \sqrt{2011}+\sqrt{2015}\end{matrix}\right.\)

\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}>\frac{2}{\sqrt{2011}+\sqrt{2015}}+\frac{2}{\sqrt{2011}+\sqrt{2015}}=\frac{4}{\sqrt{2011}+\sqrt{2015}}\)

\(\Rightarrow\frac{2}{\sqrt{2009}+\sqrt{2007}}+\frac{2}{\sqrt{2010}+\sqrt{2008}}-\frac{4}{\sqrt{2011}+\sqrt{2015}}>0\)

\(\Rightarrow A-B>0\Rightarrow A>B\)

Hay Lắm
Xem chi tiết
Nguyen Minh Thuy
Xem chi tiết
Lê Chí Cường
14 tháng 8 2015 lúc 21:59

\(\sqrt{2009}-\sqrt{2008}

Trần Đức Thắng
14 tháng 8 2015 lúc 21:59

\(\frac{1}{\sqrt{2009}-\sqrt{2008}}=\frac{\sqrt{2009}+\sqrt{2008}}{\left(\sqrt{2009}+\sqrt{2008}\right)\left(\sqrt{2009}-\sqrt{2008}\right)}=\frac{\sqrt{2009}+\sqrt{2008}}{2009-2008}=\sqrt{2009}+\sqrt{2008}\)

CMTT : \(\frac{1}{\sqrt{2008}-\sqrt{2007}}=\sqrt{2008}+\sqrt{2007}\)

Vì \(\sqrt{2009}+\sqrt{2008}>\sqrt{2008}+\sqrt{2007}\)

=> \(\frac{1}{\sqrt{2009}-\sqrt{2008}}\sqrt{2008}-\sqrt{2007}\)

Nguyễn Thị Thúy Ngân
Xem chi tiết
Bùi An Khánh
23 tháng 12 2020 lúc 20:33

khos

nito
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2023 lúc 22:30

a: \(\left(4+\sqrt{33}\right)^2=49+8\sqrt{33}=49+2\cdot\sqrt{528}\)

\(\left(\sqrt{29}+\sqrt{14}\right)^2=43+2\cdot\sqrt{29\cdot14}=43+2\cdot\sqrt{406}\)

mà 49>43 và 528>406

nên \(\left(4+\sqrt{33}\right)^2>\left(\sqrt{29}+\sqrt{14}\right)^2\)

=>\(4+\sqrt{33}>\sqrt{29}+\sqrt{14}\)

 

 Nguyễn Phương Anh
Xem chi tiết