cho x,y,z >0. cm: \(\dfrac{x^2-z^2}{y+z}+\dfrac{z^2-y^2}{x+y}+\dfrac{y^2-z^2}{x+z}\ge0\)
Cho \(x,y,z\ge0\).Tìm giá trị lớn nhất :
\(P=\dfrac{x}{x^2+y^2+2}+\dfrac{y}{y^2+z^2+2}+\dfrac{z}{z^2+x^2+2}\)
Ta có: \(\dfrac{x}{x^2+1+y^2+1}\le\dfrac{x}{2\sqrt{\left(x^2+1\right)\left(y^2+1\right)}}\le\dfrac{1}{4}\left(\dfrac{x^2}{x^2+1}+\dfrac{1}{y^2+1}\right)\)
Tương tự: \(\dfrac{y}{y^2+z^2+2}\le\dfrac{1}{4}\left(\dfrac{y^2}{y^2+1}+\dfrac{1}{z^2+1}\right)\) ; \(\dfrac{z}{z^2+x^2+2}\le\dfrac{1}{4}\left(\dfrac{z^2}{z^2+1}+\dfrac{1}{x^2+1}\right)\)
Cộng vế với vế:
\(P\le\dfrac{1}{4}\left(\dfrac{x^2}{x^2+1}+\dfrac{1}{x^2+1}+\dfrac{y^2}{y^2+1}+\dfrac{1}{y^2+1}+\dfrac{z^2}{z^2+1}+\dfrac{1}{z^2+1}\right)=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)
cho x,y,z thỏa mãn \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
Cm: \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)
\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)
CM:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Với x ; y ; z >0
Lời giải:
Đặt \(\left ( \frac{x}{y},\frac{y}{z},\frac{z}{x} \right )=(a,b,c)\Rightarrow abc=1\)
Bài toán tương đương với: Cho \(a,b,c>0\) và \(abc=1\). CMR
\(a^2+b^2+c^2\geq a+b+c\)
Thật vậy.
Áp dụng BĐT AM-GM: \(a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{1}=3(1)\)
Theo hệ quả của BĐT Am-Gm:
\(a^2+b^2+c^2\geq ab+bc+ac\Rightarrow 3(a^2+b^2+c^2)\geq a^2+b^2+c^2+2(ab+bc+ac)\)
\(\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\)
Kết hợp với \((1)\Rightarrow a^2+b^2+c^2\geq a+b+c\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=1\Leftrightarrow x=y=z\)
Cho \(x,y,z\ge0\) chứng minh:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
cho \(x,y,z\ge0\) chứng minh rằng:
\(\dfrac{x+y}{\left(x-y\right)^2}+\dfrac{z+y}{\left(y-z\right)^2}+\dfrac{x+z}{\left(x-z\right)^2}\ge\dfrac{9}{x+y+z}\)
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
do x,y,z≥0 nên x2≥0 , y+z≥0
áp dụng bất đẳng thức cosi cho 2 số dương \(\dfrac{x^2}{y+z}\) và y+z/4
x^2/y+z +(y+z)/4≥2\(\sqrt{\dfrac{x^2}{y+z}.\dfrac{\left(y+z\right)}{4}}\) =x (1)
y^2/x+z+(x+z)/4≥2\(\sqrt{\dfrac{y^2}{x+z}.\dfrac{x+z}{4}}\) =y (2)
z^2/y+x+(y+x)/4≥2\(\sqrt{\dfrac{z^2}{y+x}.\dfrac{y+x}{4}}\) =z (3)
từ (1)(2)(3)
➜\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)+(y+z/4)+(z+x)/4+(x+y)/4 ≥ x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) +(a+b+c)/2 ≥x+y+z
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥ (x+y+z)/2
⇔\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) ≥1 (vì x+y+z=2)
vậy giá trị nhỏ nhất của \(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\) =1
Nham ko phai Nesbit, Cauchy-Schwarz ra luon
Cho x;y;z>0. CMR: \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{x+y+z}{2}\)
Áp dụng BĐT cosi:
\(\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2\left(y+z\right)}{4\left(y+z\right)}}=\dfrac{2x}{2}=x\)
Cmtt \(\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y;\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\)
Cộng VTV 3 BĐT trên:
\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}+\dfrac{2\left(x+y+z\right)}{4}\ge x+y+z\\ \Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge x+y+z-\dfrac{x+y+z}{2}=\dfrac{x+y+z}{2}\)
Dấu \("="\Leftrightarrow x=y=z\)
Cho x,y,z>0. CM: \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(z+x\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
Dâu "=" xảy ra khi \(x=y=z\)