tính
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}-\sqrt{162}\)
b. \(\sqrt{63}+\sqrt{175}+\sqrt{112}\)
Rút gọn
a)\(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b)\(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
c)\(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
\(a.\sqrt{200}-\sqrt{32}+\sqrt{72}=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)
\(b.\sqrt{175}-\sqrt{112}+\sqrt{63}=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)
\(c.4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
2 . rút gọn biểu thức
a. \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b. \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
c. \(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\)
d. \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
e. \(5\sqrt{\dfrac{1}{5}+}\dfrac{1}{5}\sqrt{20}+\sqrt{5}\)
f. \(\sqrt{\dfrac{1}{5}}+\sqrt{4,5}+\sqrt{12,5}\)
g. \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\sqrt{54}+5\sqrt{1\dfrac{1}{3}}\)
m. \(3\sqrt{5a}-\sqrt{20a}+\sqrt{a}+4\sqrt{45a}\)
n. \(3\sqrt{8}-\sqrt{18}-5\sqrt{\dfrac{1}{2}}+\sqrt{50}\)
i. \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}+\sqrt{63}-\sqrt{162}\)
a: \(=10\sqrt{2}-4\sqrt{2}+6\sqrt{2}=12\sqrt{2}\)
b: \(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}=4\sqrt{7}\)
c: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}=\dfrac{1}{6}\sqrt{6}\)
d: \(=8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
e: \(=\sqrt{5}+\dfrac{2}{5}\sqrt{5}+\sqrt{5}=2.4\sqrt{5}\)
f: \(=\dfrac{1}{5}\sqrt{5}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{1}{5}\sqrt{5}+4\sqrt{2}\)
Rút gọn các biểu thức sau :
1) 2\(\sqrt{18}\)+3\(\sqrt{8}\)-3\(\sqrt{32}\)-\(\sqrt{50}\)
2) \(\sqrt{200}\)-\(\sqrt{32}\)-\(\sqrt{72}\)
3) \(\sqrt{175}\)-\(\sqrt{112}\)+\(\sqrt{63}\)
4) 3\(\sqrt{8}\)-\(\sqrt{32}\)+4\(\sqrt{2}\)+\(\sqrt{162}\)
a)\(2\sqrt{18}+3\sqrt{8}-3\sqrt{32}-\sqrt{50}\)
\(=2\sqrt{9.2}+3\sqrt{4.2}-3\sqrt{16.2}-\sqrt{25.2}\)
\(=6\sqrt{2}+6\sqrt{2}-12\sqrt{2}-5\sqrt{2}\)
\(=-5\sqrt{2}\)
b) \(\sqrt{200}-\sqrt{32}-\sqrt{72}\)
\(=\sqrt{100.2}-\sqrt{16.2}-\sqrt{36.2}\)
\(=10\sqrt{2}-4\sqrt{2}-6\sqrt{2}\)
\(=0\)
c) \(\sqrt{175}-\sqrt{112}+\sqrt{63}\)
\(=\sqrt{25.7}-\sqrt{16.7}+\sqrt{9.7}\)
\(=5\sqrt{7}-4\sqrt{7}+3\sqrt{7}\)
\(=4\sqrt{7}\)
d) \(3\sqrt{8}-\sqrt{32}+4\sqrt{2}+\sqrt{162}\)
\(=3\sqrt{4.2}-\sqrt{16.2}+4\sqrt{2}+\sqrt{81.2}\)
\(=6\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}\)
\(=15\sqrt{2}\)
Rút Gọn
1.\(3\sqrt{3}+4\sqrt{12}-5\sqrt{27}\)
2.\(\sqrt{32}-\sqrt{50}+\sqrt{18}\)
3.\(\sqrt{72}+\sqrt{4\frac{1}{2}}-\sqrt{32}-\sqrt{162}\)
4.\(\left(\sqrt{325}-\sqrt{117}+2\sqrt{208}\right):\sqrt{13}\)
5.\(\left(\sqrt{12}-\sqrt{48}-\sqrt{108}-\sqrt{192}\right):2\sqrt{3}\)
6.\(\left(2\sqrt{112}-5\sqrt{7}+2\sqrt{63}-2\sqrt{28}\right)\sqrt{7}\)
7.\(\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)\)
8.\(7\sqrt{24}-\sqrt{150}-5\sqrt{54}\)
9.\(2\sqrt{20}-\sqrt{50}+3\sqrt{80}-\sqrt{320}\)
10.\(\sqrt{32}-\sqrt{50}+\sqrt{98}-\sqrt{72}\)
11.\(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
12.\(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
13.\(2\sqrt{24}-2\sqrt{54}+3\sqrt{6}-\sqrt{150}\)
14.\(\sqrt{125}-2\sqrt{20}-3\sqrt{80}+4\sqrt{45}\)
15.\(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}\)
16.\(10\sqrt{28}-2\sqrt{275}-3\sqrt{343}-\frac{3}{2}\sqrt{396}\)
Rút gọn các biểu thức sau:
a) \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
a: Ta có: \(2\sqrt{28}+2\sqrt{63}-3\sqrt{175}+\sqrt{112}-\sqrt{20}\)
\(=4\sqrt{7}+6\sqrt{7}-15\sqrt{7}+4\sqrt{7}-2\sqrt{5}\)
\(=-\sqrt{7}-2\sqrt{5}\)
\(\sqrt{72}+\sqrt{4\dfrac{1}{2}-\sqrt{32}}-\sqrt{162}\)
\(-\dfrac{6\sqrt{2}-\sqrt{\left(9-8\sqrt{2}\right)\cdot2}}{2}\)
\(\sqrt{2.36}+\sqrt{2.\dfrac{9}{4}}-\sqrt{2.16}-\sqrt{2.81}=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}=\dfrac{-11}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\\ =\sqrt{\dfrac{4\cdot2+1}{2}}+\sqrt{4^2\cdot2}-\sqrt{6^2\cdot2}+\sqrt{9^2\cdot2}\\ =\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+7\sqrt{2}\\ =\dfrac{3}{\sqrt{2}}+\dfrac{7\sqrt{2}\cdot\sqrt{2}}{\sqrt{2}}\\ =\dfrac{17}{\sqrt{2}}\)
\(=\sqrt{\dfrac{9}{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3}{2}\sqrt{2}+7\sqrt{2}=\dfrac{17}{2}\sqrt{2}\)
\(\sqrt{4\dfrac{1}{2}}+\sqrt{32}-\sqrt{72}+\sqrt{162}\)
\(=\sqrt{\dfrac{9}{2}}+\sqrt{4^2.2}-\sqrt{6^2.2}+\sqrt{9^2.2}\)
\(=\dfrac{3}{\sqrt{2}}+4\sqrt{2}-6\sqrt{2}+9\sqrt{2}\)
\(=\dfrac{3\sqrt{2}}{2}+7\sqrt{2}=\dfrac{3\sqrt{2}+14\sqrt{2}}{2}=\dfrac{17\sqrt{2}}{2}\)
6) (3\(\sqrt{2}\) -\(\sqrt{3}\))(\(\sqrt{3}\)+3\(\sqrt{2}\))
7) \(\sqrt{72}\)+\(\sqrt{4\dfrac{1}{2}}\) - \(\sqrt{32}\) - \(\sqrt{162}\)
6: Ta có: \(\left(3\sqrt{2}-\sqrt{3}\right)\left(3\sqrt{2}+\sqrt{3}\right)\)
=18-3
=15
7: Ta có: \(\sqrt{72}+\sqrt{4\dfrac{1}{2}}-\sqrt{32}-\sqrt{162}\)
\(=6\sqrt{2}+\dfrac{3}{2}\sqrt{2}-4\sqrt{2}-9\sqrt{2}\)
\(=-\dfrac{11}{2}\sqrt{2}\)
/sqrt{72}+ \sqrt{4+1/2} - \sqrt{32} -\sqrt{162}
\sqrt{72}\+ \sqrt{4+1/2}\ - \sqrt{32}\ -\sqrt{162}\