Cho tam giác MNP vuông cân tại M, 1 đường thẳng d bất kì đi qua m (d ko cắt đoạn NP).Trên d lấy A và B sao cho MA=PB và MB=NA
Tứ giác ANPB là hình gì ?
Tam giác MNP vuông can tại M, một đường thẳng d bất kỳ đi qua M. Trên d lấy A và B sao cho MA = PB và MB = NA. Hỏi tứ giác ANPB là hình gì?
Bài 5: Cho tam giác MNP cân tại M. Kẻ MK PN (K NP)
a) Chứng minh: MNK = MPK và MK là đường trung trực của đoạn thẳng NP
b) Trên tia đối của tin NP lấy điểm A, trên tia đối của tia PN lấy điểm B sao cho AN = BP.
Chứng minh: MA = MB
c) Lấy điểm D bất kỳ trên cạnh MA (D khác A, M). Qua D, kẻ đường thẳng song song với AB
cắt MB tại E. Chứng minh: MDE cân
Ai giải nhanh giúp mk vs mk tick cho
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
AI LÀM NHANH MÌNH TICK NHA
GiẢi
a , Xét tam giác MNA và tam giác DNA có :
NM=ND (GT)
Góc NMA = góc NDA =90 độ
NA là cạnh chung
=> Tam giác MNA = tam giác DNA (c.g.c)
=> Góc MNA =góc DNA ( hai góc tương ứng)
=. NA là tia phân giác của góc MNP
b, Tam giác MND là tâm giác đều vì mỗi góc đều có só đo = 60 độ
d,Xetstam giác MBA và tam giác DPA có :
BM=DP(GT)
góc MAB = góc DPA ( đối đỉnh)
MA=DA (hai cạnh tương ứng của tam giác MNA=tam giác DNA)
=> Tam giác MBA = tam giác DPA (c.g.c)
=> AB=PA ( hai cạnh tương ứng)
=> Tam giác APB cận tại A
e, AD vuông góc với NP
BD vuông góc với NP
=. D,A,B thẳng hàng
Cho tam giác MNP cân tại M. Gọi A là trung điểm của NP, B là điểm đối xứng với M qua A.
a) Chứng minh tứ giác MNBP là hình thoi.
b) Tam giác MNP cần thêm điều kiện gì thì tứ giác MNBP là hình vuông?
c) Qua M kẻ đường thẳng song song với NP, đường thẳng này cắt đường thẳng PB tại C. Chứng minh MC = NP.
d) Cho biết MC = 6cm, MB = 8cm. Tính đường cao MH của tam giác MCB
Cho tam giác MNP cân tại M. Gọi A là trung điểm của NP, B là điểm đối xứng với M qua A.
a) Chứng minh tứ giác MNBP là hình thoi.
b) Tam giác MNP cần thêm điều kiện gì thì tứ giác MNBP là hình vuông?
c) Qua M kẻ đường thẳng song song với NP, đường thẳng này cắt đường thẳng PB tại C. Chứng minh MC = NP.
d) Cho biết MC = 6cm, MB = 8cm. Tính đường cao MH của tam giác MCB
B1, Cho tứ giác ABCD có các tia p/giác của góc A và góc D vuông góc với nhau.Chứng minh:
a)ABCD là hình thang
b) Hai tia phân giác của góc C và D vuông góc với nhau
B2, Cho hình thang ABCD có đáy AB=40,CD=80, cạnh bên BC=50,AD=30. Chứng minh ABCD là hình thang vuông
B3.Cho tam giác MNP vuông cân ở M, đường thẳng d bất kỳ qua M ( d không cắt NP). Trên d lấy A,B sao cho MA=PB vàMB=NA. Tứ giác ANPB là hình gì?
B4. Cho ABCD là hình thang có BD là phân giác góc D và AE là p/giác góc A ( E nằm trên CD). Biết AE//BC và Olà giao điểm của AE và DB. Chứng minh:
a) AE vuông góc BD
b) AD//BE và AD=BE
c) E là trung điểm DC
d) Tứ giác BCEO là hình gì?
e) Biết góc BEC=180 độ. Tính các góc ABCD
Mong mọi người giúp với a.! Mình cảm ơn nhiềuuuuuuuuuuuuuu... lắm! :)
cho tam giác mnp vuông tại m , góc mnp=60 độ , trên cạnh np lấy d sao chonm=nd. từ d kẻ đường thẳng vuông gác vs np ,cắt mp tại a.
a)cmr: nalaf tia phân giác của góc mnp.
b) tam giác nap là tam giác gì? vì sao.
c)tam giác nap cân tại a cà d là tung điểm của np
Cho tam giác MNP vuông cân tại M,một đường thẳn d bất kì đi qua M(d không ắt NP).Trên d lấy 2 điểm A và B sao cho MA=PB,MB=NA.Tứ giác ANPB là hình gì
Mn vẽ hình giúp mik nha!!!!