Tìm x\(\in\)Z và x lớn nhất thỏa mãn:-4-x>3
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
Xét ba số thực x,y,z thỏa mãn các điều kiện x/2=y/3=z/4 và giá trị tuyệt đối của x-y=z^2/12.tìm giá trị lớn nhất của yz-x
Cho ba số thực x,y,z thỏa mãn x ≥ 0, y ≥ 0, z ≥ 2 và x + y + z = 4 . Tìm giá trị lớn nhất của biểu thức H = xyz
\(4=x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\sqrt[3]{xyz}\le\dfrac{4}{3}\Leftrightarrow xyz\le\dfrac{64}{27}\)(BĐT cauchy)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{4}{3}\)
Lời giải:
Áp dụng BĐT AM-GM:
$xy\le \frac{(x+y)^2}{4}=\frac{(4-z)^2}{4}$
$\Rightarrow H\leq \frac{z(4-z)^2}{4}$
Tiếp tục áp dụng BĐT AM-GM:
$z(4-z)\leq \frac{(z+4-z)^2}{4}=4$
$4-z\leq 2$ do $z\geq 2$
$\Rightarrow \frac{z(4-z)^2}{4}\leq \frac{4.2}{4}=2$
Hay $H\leq 2$
Vậy $H_{\max}=2$ khi $(x,y,z)=(1,1,2)$
cho 3 số thực x, y, z thỏa mãn x+y+z =4,tìm giá trị lớn nhất của biểu thức A = xy+3yz+2zx
\(A=3yz+\left(4-y-z\right)\left(y+2z\right)\)
\(A=-y^2+4y-2z^2+8z\)
\(A=-\left(y-2\right)^2-2\left(z-2\right)^2+12\le12\)
\(A_{max}=12\) khi \(\left(x;y;z\right)=\left(0;2;2\right)\)
a, Tìm các số nguyên x ,y thỏa mãn x.y=2016 và x+ y = -95
b, Tìm các số nguyên n để : 7n - 8/ 2n -3 có giá trị lớn nhất
c, Tìm các số x ,y ,z nguyên dương thỏa mãn : x^3+5x^2+21=7^y và x + 5 = 7^z
Cho z là số phức thay đổi thỏa mãn ( 1 + i ) z + 2 - i = 4 và M(x,y) là điểm biểu diễn cho z trong mặt phẳng phức. Tìm giá trị lớn nhất của biểu thức T = x + y + 3
A. T = 4 + 2 2
B. 8
C. 4
D. 4 2
Tìm các số không âm x,y,z thỏa mãn: x + 3z = 8, x + 2y = 9 và x + y + z lớn nhất.
Cho \(x\), \(y\), \(z\) \(\in\left[0;2\right]\) và thỏa mãn \(x+2y+z=6\). Tìm giá trị lớn nhất của biểu thức \(P=3^{2x-x^2}+5^{2y-y^2}+3^z+2x^2+4y^2\)
A. \(maxP=25\) B. \(maxP=26\)
C. \(maxP=27\) D. \(maxP=30\)
Mình cần bài giải ạ, mình cảm ơn nhiều♥
Do \(x;y\in\left[0;2\right]\Rightarrow\left\{{}\begin{matrix}x\left(2-x\right)\ge0\\y\left(2-y\right)\ge0\end{matrix}\right.\) \(\Rightarrow2x^2+4y^2\le4x+8y\)
\(P\le3^0+5^0+3^z+4\left(x+2y\right)=2+3^z+4\left(6-z\right)=3^z-4z+26\)
Xét hàm \(f\left(z\right)=3^z-4z+26\) trên \(\left[0;2\right]\)
\(f'\left(z\right)=3^z.ln3-4=0\Rightarrow z=log_3\left(\dfrac{4}{ln3}\right)=a\)
\(f\left(0\right)=27\) ; \(f\left(2\right)=27\); \(f\left(a\right)\approx-1,1\)
\(\Rightarrow f\left(z\right)\le27\Rightarrow maxP=27\)
(Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;2;2\right)\))
Ồ mà khoan, bài trước bị nhầm lẫn ở chỗ \(3^{2x-x^2}+5^{2y-y^2}\ge3^0+5^0\) mới đúng, ko để ý bị ngược dấu đoạn này
Vậy giải cách khác:
\(0\le x;y;z\le2\Rightarrow x\left(2-x\right)\ge0\Rightarrow2x-x^2\ge0\)
Lại có: \(2x-x^2=1-\left(x-1\right)^2\le1\)
\(\Rightarrow0\le2x-x^2\le1\)
Tương tự ta có: \(0\le2y-y^2\le1\)
Xét hàm: \(f\left(t\right)=3^t-2t\) trên \(\left[0;1\right]\)
\(f'\left(t\right)=3^t.ln3-2=0\Rightarrow t=log_3\left(\dfrac{2}{ln3}\right)=a\)
\(f\left(0\right)=1;\) \(f\left(1\right)=1\) ; \(f\left(a\right)\approx0,73\)
\(\Rightarrow f\left(t\right)\le1\Rightarrow3^t-2t\le1\Rightarrow3^t\le2t+1\)
\(\Rightarrow3^{2x-x^2}\le2\left(2x-x^2\right)+1\)
Hoàn toàn tương tự, ta chứng minh được:
\(5^t\le4t+1\) với \(t\in\left[0;1\right]\Rightarrow5^{2y-y^2}\le4\left(2y-y^2\right)+1\)
\(3^t\le4t+1\) với \(t\in\left[0;2\right]\Rightarrow3^z\le4z+1\)
\(\Rightarrow P\le2\left(2x-x^2\right)+4\left(2y-y^2\right)+4z+3+2x^2+4y^2=4\left(x+2y+z\right)+3=27\)
Lần này thì ko sai được rồi
Tìm ba số x,y,z không âm thỏa mãn x+3z=8,x+2y=9 và x+y+z lớn nhất
Cho 3 số thực: x; y; z thỏa mãn: \(x\ge1;y\ge4;z\ge9\). Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{yz.\sqrt{x-1}+zx.\sqrt{y-4}+xy.\sqrt{z-9}}{xyz}\)
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24