\(-\dfrac{2}{5}x^2y^5\left(5xy^2-\dfrac{1}{2}x^2y-\dfrac{7}{5}x^3\right)\)
Tính: (nhân đa thức với đa thức)
\(-\dfrac{2}{5}x^2y^5\left(5xy^2-\dfrac{1}{2}x^2y-\dfrac{7}{5}x^3\right)\)
\(-\dfrac{2}{5}x^2y^5\left(5xy^2-\dfrac{1}{2}x^2y-\dfrac{7}{5}x^3\right)\)
\(-2x^3y^7+\dfrac{1}{5}x^4y^6+\dfrac{14}{25}x^5y^5\)
a,\(\dfrac{x+1}{x-3}+\dfrac{-2x^2+2x}{x^2-9}+\dfrac{x-1}{x+3}\)
b,\(\dfrac{1-2x}{6x^3y}+\dfrac{3+2y}{6x^3y}+\dfrac{2x-4}{6x^3y}\)
c,\(\dfrac{5}{2x^2y}+\dfrac{3}{5xy^2}+\dfrac{x}{3y^3}\)
d,\(\dfrac{5}{4\left(x+2\right)}+\dfrac{8-x}{4x^2+8x}\)
c,\(\dfrac{x^2+2}{x^3+1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
giải hệ pt
a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4}{x+y-1}-\dfrac{5}{7x-y+3}=\dfrac{5}{2}\\\dfrac{3}{x+y-1}+\dfrac{1}{2x-y+3}=\dfrac{7}{5}\end{matrix}\right.\)
A=\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
Tính A+B,A-B
Helpp..
\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)
\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2
A−B=6760x2y3−14x8y7z2
\(A+B=\dfrac{67}{60}x^2y^3+\left(x^6y^3\right)\left(\dfrac{1}{4}x^2y^4z^2\right)\)
\(=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)
\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)
Tính giá trị của biểu thức
A=
\(\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3\)
B=\(\left(x^2y\right)^3.\left(\dfrac{1}{2}xy^2z\right)^2\)
\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)
1.Tính: \(\left(\dfrac{-2}{3}x^3y^2z\right).5xy^2z^2\)
2. Tính GTBT M= \(\dfrac{2x^2y-1,2\left(3x-2y\right)}{xy}\)tại x=\(\dfrac{1}{2}\); y= 2
2: Thay \(x=\dfrac{1}{2}\) và y=2 vào M, ta được:
\(M=\dfrac{2\cdot\left(\dfrac{1}{2}\right)^2\cdot2-1.2\cdot\left(3\cdot\dfrac{1}{2}-2\cdot2\right)}{\dfrac{1}{2}\cdot2}\)
\(=4\cdot\dfrac{1}{4}-1.2\left(\dfrac{3}{2}-4\right)\)
\(=1-1.8+4.8\)
\(=4\)
1: Ta có: \(\left(-\dfrac{2}{3}x^3y^2\right)z\cdot5xy^2z^2\)
\(=\left(-\dfrac{2}{3}\cdot5\right)\cdot\left(x^3\cdot x\right)\cdot\left(y^2\cdot y^2\right)\cdot\left(z\cdot z^2\right)\)
\(=\dfrac{-10}{3}x^4y^4z^3\)
giải hệ pt :
a, \(\left\{{}\begin{matrix}3xy+2y=5\\2xy\left(x+y\right)+y^2=5\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{2y}=2\left(y^4-x^4\right)\\\dfrac{1}{x}+\dfrac{1}{2y}=\left(3y^2+x^2\right)\left(3x^2+y^2\right)\end{matrix}\right.\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
BT11: Tìm hiệu A-B biết
\(a,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(b,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a/
\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)
b/
\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)