Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
nguyễn ngọc phương linh
Xem chi tiết
༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
ILoveMath
13 tháng 11 2021 lúc 14:25

a.\(=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2+2ab-2bc-2ac-2\left(a^2+2ab+b^2\right)=2a^2+2b^2+2c^2+4ab-2a^2-2ab-2b^2=2c^2+2ab\)

b. \(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\left(a^2+b^2-c^2+a^2-b^2+c^2\right)=\left(2b^2-2c^2\right).2a^2=4a^2\left(b^2-c^2\right)=4a^2b^2-4a^2c^2\)

titanic
Xem chi tiết
alibaba nguyễn
14 tháng 10 2017 lúc 14:33

Sửa đề cho nó đẹp

\(\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)

\(=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=-3\)

Moon
3 tháng 11 2018 lúc 11:23

em ms hok lớp 1

Mai Thành Đạt
Xem chi tiết
Võ Đông Anh Tuấn
15 tháng 11 2016 lúc 11:38

Phân tích mẫu thức thành nhân tử :

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+ac^2-bc^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)\)

\(=\left(b-c\right)\left[a\left(a-b\right)-c\left(a-b\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right).\)

Do đó : \(A=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Nhận xét : Nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz.\)

Đặt \(b-c=x,c-a=y,a-b=z\) thì \(x+y+z=0\)

Theo nhận xét trên : \(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3.\)

Phương An
15 tháng 11 2016 lúc 11:25

Tử:

(b - c)3 + (c - a)3 + (a - b)3

= (b - c + c - a + a - b)3 - 3(b - c + c - a)(b - c + a - b)(c - a + a - b)

= 0 - 3(b - a)(a - c)(c - b)

= 3(a - b)(a - c)(c - b)

Mẫu:

a2(b - c) + b2(c - a) + c2(a - b)

= a2(b - c) + b2c - ab2 + ac2 - bc2

= a2(b - c) - a(b2 - c2) + bc(b - c)

= a2(b - c) - a(b - c)(b + c) + bc(b - c)

= (b - c)(a2 - ab - ac + bc)

= (b - c)[a(a - b) - c(a - b)]

= (b - c)(a - b)(a - c)

\(A=\frac{3\left(a-b\right)\left(a-c\right)\left(c-b\right)}{\left(b-c\right)\left(a-b\right)\left(a-c\right)}\)

\(=\frac{3\left(c-b\right)}{b-c}\)

lan phuong
Xem chi tiết
Vũ Quang Minh
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 10 2018 lúc 20:29

+) Xét tử thức: \(a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^2\left(a^2-b^2\right)\)

\(=a^3\left(b^2-c^2\right)+\left(b^3c^2-b^2c^3\right)-\left(a^2b^3-a^2c^3\right)\)

\(=a^3\left(b-c\right)\left(b+c\right)+b^2c^2\left(b-c\right)-a^2\left(b-c\right)\left(b^2+bc+c^2\right)\)

\(=\left(b-c\right)\left(a^3b+a^3c+b^2c^2-a^2b^2-a^2bc-a^2c^2\right)\)

\(=\left(b-c\right)\left[\left(a^3b-a^2bc\right)+\left(a^3c-a^2c^2\right)+\left(b^2c^2-a^2b^2\right)\right]\)

\(=\left(b-c\right)\left[a^2b\left(a-c\right)+a^2c\left(a-c\right)-b^2\left(a-c\right)\left(a+c\right)\right]\)

\(=\left(b-c\right)\left(a-c\right)\left(a^2b+a^2c-ab^2-b^2c\right)\)

\(=\left(b-c\right)\left(a-c\right)\left[ab\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\right]\)

\(=\left(b-c\right)\left(a-c\right)\left(a-b\right)\left(ab+bc+ca\right)\)

+) Xét mẫu thức: \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-bc^2-ab^2+ac^2\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b-c\right)\left(b+c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[\left(a^2-ac\right)-\left(ab-bc\right)\right]\)

\(=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]=\left(b-c\right)\left(a-c\right)\left(a-b\right)\)

Từ đó; ta có: 

\(\frac{a^3\left(b^2-c^2\right)+b^3\left(c^2-a^2\right)+c^3\left(a^2-b^2\right)}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}=\frac{\left(b-c\right)\left(a-c\right)\left(a-b\right)\left(ab+bc+ca\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=ab+bc+ca\). KL:...

Luzo Anh
Xem chi tiết
Trần Văn Thành
26 tháng 11 2016 lúc 20:04

 đâu khó đâu cái này lớp 6 chứ 8 cái gì

Luzo Anh
26 tháng 11 2016 lúc 20:08

Nếu không khó thì giải giùm đi

alibaba nguyễn
27 tháng 11 2016 lúc 5:52

Xem lại đề là b2(c2 - a2) hay.b4(c2 - a2​) nhé. Bạn phân tích nhân tử cho tử và mẫu rồi rút gọn là ra nhé. Không khó đâu bạn. Bạn thử làm xem nếu bí quá thì inbox mình chỉ cho

Xem chi tiết
Moon
3 tháng 11 2018 lúc 11:24

em ms hok lớp 1

ST
3 tháng 11 2018 lúc 11:26

Phân tích mẫu \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)+b^2c-ab^2+c^2a-c^2b\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b^2-c^2\right)\)

\(=a^2\left(b-c\right)+bc\left(b-c\right)-a\left(b+c\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a^2+bc-ab-ac\right)=\left(b-c\right)\left[a\left(a-c\right)-b\left(a-c\right)\right]\)

\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)=-\left(b-c\right)\left(a-b\right)\left(c-a\right)\)

Đặt b - c = x, c - a = y, a - b = z

=> x + y + z = b - c + c - a + a - b = 0

Từ x+y+z=0 => x3+y3+z3=3xyz (tự c/m)

=>\(A=\frac{x^3+y^3+z^3}{-xyz}=\frac{3xyz}{-xyz}=-3\)

Huỳnh Kim Bích Ngọc
Xem chi tiết