Voi giá trị nào của biến, đa thức có gái trị nhỏ nhất
A= (x-1)(x+2)(x+3)(x+6)
Với giá trị nào của biến, các đa thức sau có giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
a) x2 + x + 1
b) (x - 1)(x + 2)(x + 3)(x + 6)
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 \(\ge\)0
=> (x + 1/2)2 + 3/4 \(\ge\)3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 \(\ge\)0
=> (x2 + 5x)2 - 36 \(\ge\)-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
Với giá trị nào của biến, các đa thức sau có giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
a) x2 + x + 1
b) (x - 1)(x + 2)(x + 3)(x + 6)
a. x2 + x + 1
= x2 + 2.x.1/2 + 1/4 + 3/4
= (x + 1/2)2 + 3/4
Mà (x + 1.2)2 ≥0
=> (x + 1/2)2 + 3/4 ≥3/4
Vậy GTNN của đa thức là 3/4 <=> x + 1/2 = 0 <=> x = -1/2
b. (x - 1)(x + 2)(x + 3)(x + 6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= (x2 + 6x - x - 6)(x2 + 3x + 2x + 6)
= (x2 + 5x - 6)(x2 + 5x + 6)
= (x2 + 5x)2 - 62
= (x2 + 5x)2 - 36
Mà (x2 + 5x)2 ≥0
=> (x2 + 5x)2 - 36 ≥-36
Vậy đa thức có GTNN là -36 <=> x2 + 5x = 0 <=> x.(x + 5) = 0 <=> x = 0 hoặc x + 5 = 0 <=> x = 0 hoặc x = -5.
Bài 1: giá trị của mỗi đa thức sau có phụ thuộc vào giá trị của biến không
a, P= (x+2)3+ (x-2)3-2x(x2+12)?
b, Q=(x-1)3-(x+1)3+6(x+1)(x-1)?
a,Ta có:P=(x+2)3+(x-2)3-2x(x2+12)
=(x+2+x-2)[(x+2)2-(x+2)(x-2)+(x-2)2]-2x(x2+12)
=2x(x2+12)-2x(x2+12)
Câu b tương tự
1)Vvới giá trị nào của biến,đa thức B=-x2-2y2 -2xy+2y có giá trị lớn nhất. Tìm giá trị lớn nhất đó.
2)Tìm giá trị nhỏ nhất của C=x2+y2+x+y+1.
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
Bài 1) Với giá trị nào của x thì đa thức sau nhận giá trị lớn nhất: P(x)= 4x - x2 + 1
Bài 2) Với giá trị nào của x thì đa thức sau nhận giá trị nhỏ nhất: A(x)= x2 - 4x + y2 - 8y + 6
1)P(x)=4x-x2+1=-(x2-4x+4)+5=-(x-2)2+5
Do (x-2)2>0
=>-(x-2)2<0
=>P(x)=-(x-2)2+5<5
=>Max P=5<=>(x-2)2=0<=>x=2
2)A(x)=x2-4x+y2-8y+6=(x2-4x+4)+(y2-8y+16)-14
=(x-2)2+(y-4)2-14
Do (x-2)2>0
(y-4)2>0
=>(x-2)2+(y-4)2>0
=>A(x)=(x-2)2+(y-4)2-14>-14
=>Min A=-14<=>(x-2)2=0 và (y-4)2=0<=>x=2 và y=4
P(x) = 4x - x^2 + 1
= - ( x^2 - 4x + 10)
= -( x^2 - 2.x.2 + 4 + 6)
= -( x- 2 )^2 - 6
Vậy GTLN của p là -6 tại x - 2 = 0 => x = 2
VẬy x = 2 thì ....
B2)
A(x) = x^2 - 4x + y^2 - 8y + 6
= x^2 - 2.x . 2 + 4 + y^2 - 2.y.4 + 16 - 14
=( x - 2)^2 + (y - 4)^2 - 14
VẬy GTNN của bt là -14
khi x - 2 = 0 => x = 2
y - 4= 0 => y=4
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
28. giá trị của mỗi đa thức sau có hụ thuộc vào giá trị của biến không:
a)P=\(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)?
b)Q=\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)?
a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy g/t P không phụ thuộc vào biến.
b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)
Vậy g/t Q không phụ thuộc vào biến.
b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6\)
=-8
Bài 2: Gía trị của mỗi đa thức sau có phụ thuộc vào giá trị của biến không
a) P= (x+2) mũ 3 + (x-2) mũ 3 - 2x(x mũ 2 + 12 ) ?
b) Q= (x-1) mũ 3 - (x+1) mũ 3 + 6(x+1)(x-1) ?
P = ( x + 2 )3 + ( x - 2 )3 - 2x( x2 + 12 )
= x3 + 6x2 + 12x + 8 + x3 - 6x2 + 12x - 8 - 2x3 - 24x
= ( x3 + x3 - 2x3 ) + ( 6x2 - 6x2 ) + ( 12x + 12x - 24x ) + ( 8 - 8 )
= 0
Vậy giá trị của P không phụ thuộc vào biến
Q = ( x - 1 )3 - ( x + 1 )3 + 6( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 - ( x3 + 3x2 + 3x + 1 ) + 6( x2 - 1 )
= x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
= ( x3 - x3 ) + ( 6x2 - 3x2 - 3x2 ) + ( 3x - 3x ) + ( -1 - 1 - 6 )
= -8
Vậy giá trị của Q không phụ thuộc vào biến
1. Tính Giá trị nhỏ nhất của biểu thứ (x+1)(x+2)(x+3)(x+6)+2010
2. Phân tích đa thức thành nhân tử (x-2)(x-4)(x-6)(x-8) +15
3. Tính giá trị biểu thức sau: x^2 +y= y^2 +x. tính giá trị của biểu thức sau A= (x^2 +y^2 +xy) : (xy-1)
bbgfhfygfdsdty64562gdfhgvfhgfhhhhh
\hvhhhggybhbghhguyg