a)\(P=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x=0\)
Vậy g/t P không phụ thuộc vào biến.
b)\(Q=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)=-6x^2-2+6x^2-6=-8\)
Vậy g/t Q không phụ thuộc vào biến.
b) Ta có: \(Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6\left(x^2-1\right)\)
\(=-2\left(3x^2+1\right)+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6\)
=-8