Cho a,b,c>0 . Chứng minh rằng:
M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) không là số nguyên.
Cho 3 số a, b, c, dương. M = \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) . Chứng tỏ rằng M không là số nguyên
Lời giải:
Với $a,b,c>0$ ta có:
$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$
Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$
$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$
Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$
Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$
Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.
Cho \(a,b,c\) là các số tự nhiên khác \(0\), \(a\ne c\) sao cho \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\). Chứng minh rằng \(a^2+b^2+c^2\) không phải là số nguyên tố.
cho các số nguyên dương a, b, c thỏa mãn a+b+c=2016.
Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên
A = \(\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)
\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
Ta có: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\Rightarrow\dfrac{b+c}{a}=\dfrac{a+c}{b}\left(1\right)\)
\(\dfrac{c}{a+b}=\dfrac{b}{a+c}\Rightarrow\dfrac{a+b}{c}=\dfrac{a+c}{b}\left(2\right)\)
Từ (1), (2) \(\Rightarrow\dfrac{b+c}{a}=\dfrac{a+b}{c}=\dfrac{a+c}{b}\)
Cho ba số a, b, c khác nhau và khác 0 thỏa mãn điều kiện: \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\) chứng minh rằng \(M=\dfrac{b+c}{a}=\dfrac{a+c}{b}=\dfrac{a+b}{c}\)
a+b−cc=b+c−aa=c+a−bb
⇒a+b−cc+1=b+c−aa+1=c+a−bb+1
⇒a+bc=b+ca=c+ab
+)Nếu a+b+c=0⇒a+b=−c;b+c=−a;c+a=−b
⇒B=a+ba.c+ac.b+cb=−ca.−bc.−ab=−(abc)abc=−1
Nếu a+b+c≠0
Áp dụng tính chất dãy tỉ số bằng nhau ta có
a+bc=b+ca=c+ab=2(a+b+c)a+b+c=2
⇒a+b=2c
b+c=2a
c+a=2b
⇒B=2ca.2bc.2ab=2.2.2=8
2) Cho a, b, c là các số nguyên khác 0 và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\)
. Chứng minh : a = b = c
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
Khi đó:
\(\dfrac{a}{b}=1\Rightarrow a=b\left(1\right)\)
\(\dfrac{b}{c}=1\Rightarrow b=c\left(2\right)\)
\(\dfrac{c}{a}=1\Rightarrow c=a\left(3\right)\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow a=b=c\)
Cho 3 số a , b , c khác 0 thỏa mãn : \(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}=\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{a}\)
Chứng minh rằng : a=b=c
\(\Leftrightarrow\dfrac{2a^2}{b^2}+\dfrac{2b^2}{c^2}+\dfrac{2c^2}{a^2}=\dfrac{2a}{c}+\dfrac{2c}{b}+\dfrac{2b}{a}\)
\(\Leftrightarrow\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}\right)+\left(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}-\dfrac{2c}{b}\right)+\left(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}-\dfrac{2b}{a}\right)=0\)
\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{b}{c}\right)^2+\left(\dfrac{a}{b}-\dfrac{c}{a}\right)^2+\left(\dfrac{b}{c}-\dfrac{c}{a}\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}-\dfrac{b}{c}=0\\\dfrac{a}{b}-\dfrac{c}{a}=0\\\dfrac{b}{c}-\dfrac{c}{a}=0\end{matrix}\right.\) \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D