Đưa các biểu thức về dạng bình phương :
a) 3+ 2\(\sqrt{2}\)
b) 3-\(\sqrt{8}\)
c) 9+ 4\(\sqrt{5}\)
d) 23- 8\(\sqrt{7}\)
Đưa các biểu thức sau về dạng bình phương:
a, \(3+2\sqrt{2}\)
b, \(3-\sqrt{8}\)
c, \(9+4\sqrt{5}\)
d, \(23-8\sqrt{7}\)
a)
\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)
mấy câu còn lại tương tự
Đưa bth sau về dạng bình phương của 1 số thực:
a, \(9+4\sqrt{5}\)
b, \(23-8\sqrt{7}\)
c, \(4-2\sqrt{3}\)
d, \(11+6\sqrt{2}\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\)
b) \(23-8\sqrt{7}=4^2-2.4.\sqrt{7}+\left(\sqrt{7}\right)^2=\left(4-\sqrt{7}\right)^2\)
c) \(4-2\sqrt{3}=\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2=\left(\sqrt{3}-1\right)^2\)
d) \(11+6\sqrt{2}=3^2+2.3.\sqrt{2}+\left(\sqrt{2}\right)^2=\left(3+\sqrt{2}\right)^2\)
a) \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
b) \(23-8\sqrt{7}=\left(4-\sqrt{7}\right)^2\)
c) \(4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
d) \(11+6\sqrt{2}=\left(3+\sqrt{2}\right)^2\)
Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu
b) \(27-10\sqrt{2}\)
c)\(18-8\sqrt{2}\)
d)\(4-2\sqrt{3}\)
e)\(6\sqrt{5}+14\)
f)\(20\sqrt{5}+45\)
G)\(7-2\sqrt{6}\)
b)\(27-10\sqrt{2}=5^2-2.5\sqrt{2}+2=\left(5-\sqrt{2}\right)^2\)
c)\(18-8\sqrt{2}=4^2-2.4\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)
d)\(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
e)\(6\sqrt{5}+14=9+2.3\sqrt{5}+5=\left(3+\sqrt{5}\right)^2\)
f)\(20\sqrt{5}+45=5^2+2.5.2\sqrt{5}+20=\left(5+2\sqrt{5}\right)^2\)
g)\(7-2\sqrt{6}=6-2\sqrt{6}+1=\left(\sqrt{6}-1\right)^2\)
1 Tìm x biết :
a \(\sqrt{3x^2}=\sqrt{12}\) ; b\(\sqrt{\left(x-2\right)}^2=3\) ; c\(\sqrt{4.\left(x^2+6x+9\right)=8}\) ; d\(\sqrt{3x^2-6x+3}=\sqrt{3}\) .
2 Hãy biến đổi mẫu thành bình phương của một số hoặc một biểu thức rồi khai phương mẫu(đưa ra ngoài dấu căn)
\(\sqrt{\dfrac{3}{5}};\sqrt{\dfrac{3}{8};}\sqrt{\dfrac{5b}{a}}\left(vớia.b\ge0\right)\)
Bài 1:
a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)
\(\Leftrightarrow3x^2=12\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
rút gọn các biểu thức sau:
a \(\sqrt[3]{8\sqrt{5}-16}.\sqrt[3]{8\sqrt{5}+16}\)
b \(\sqrt[3]{7-5\sqrt{2}}-\sqrt[6]{8}\)
c \(\sqrt[3]{4}.\sqrt[3]{1-\sqrt{3}}.\sqrt[6]{4+2\sqrt{3}}\)
d \(\dfrac{2}{\sqrt[3]{3}-1}-\dfrac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\)
`c)root{3}{4}.root{3}{1-sqrt3}.root{6}{(sqrt3+1)^2}`
`=root{3}{4(1-sqrt3)}.root{3}{1+sqrt3}`
`=root{3}{4(1-sqrt3)(1+sqrt3)}`
`=root{3}{4(1-3)}=-2`
`d)2/(root{3}{3}-1)-4/(root{9}-root{3}{3}+1)`
`=(2(root{3}{9}+root{3}{3}+1))/(3-1)-(4(root{3}{3}+1))/(3+1)`
`=root{3}{9}+root{3}{3}+1-root{3}{3}-1`
`=root{3}{9}`
`a)root{3}{8sqrt5-16}.root{3}{8sqrt5+16}`
`=root{3}{(8sqrt5-16)(8sqrt5+16)}`
`=root{3}{320-256}`
`=root{3}{64}=4`
`b)root{3}{7-5sqrt2}-root{6}{8}`
`=root{3}{1-3.sqrt{2}+3.2.1-2sqrt2}-root{6}{(2)^3}`
`=root{3}{(1-sqrt2)^3}-sqrt2`
`=1-sqrt2-sqrt2=1-2sqrt2`
Viết các biểu thức sau dưới dạng bình phương:
\(13-4\sqrt{3}\)
rút gọn các biểu thức sau:
a)\(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{5}}\)
b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)
a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)
câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)
b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)
Bài 1: rút gọn biểu thức
d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
a)\(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)
b)\(\sqrt{6-4\sqrt{2}}+\sqrt{2}\)
c)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)
\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
\(=4+\sqrt{7}-\sqrt{7}\)
\(=4\)
a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)
=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)
=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)
=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)
=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)
=\(\sqrt{2}\)
Đưa biểu thức sau về dạng bình phương
3 - \(\sqrt{8}\)
\(3-\sqrt{8}=3-2\sqrt{2}=\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2=\left(\sqrt{2}-1\right)^2\)
3 - \(\sqrt{8}\)
= 3 - 2\(\sqrt{2}\)
= 1 - 2\(\sqrt{2}\) + 2
= \(\left(1-\sqrt{2}\right)^2\)
\(3-\sqrt{8}=\left(\sqrt{2}-1\right)^2\)
Đưa biểu thức trong căn về dạng hình phương của một tổng hoặc một hiệu:
f/ \(\sqrt{8-2\sqrt{15}+}\sqrt{4-2\sqrt{3}}\)
g/ \(\sqrt{42-10\sqrt{17}+\sqrt{33-8\sqrt{17}}}\)
h/ \(\sqrt{12-2\sqrt{35}}+\sqrt{7-2\sqrt{10}}-\sqrt{49}\)
i/ \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-\sqrt{3-\sqrt{5}}\)
l/ \(\sqrt{11+4\sqrt{6}}-\sqrt{9-4\sqrt{2}}\)