Cho Tam Giác ABC có P,Q lần lượt là trung điểm của AB và AC
a, Chứng minh tứ giác PQCB là hình thang
b, Tam giác ABC cần thêm điều kiện gì để PQCB là hình thang cân
c, Trung tuyến AM của tam giác ABC cắt PQ tại H. Chứng minh H là trung điểm của PQ
Cho tam giác ABC vuông tại A, trung tuyến AM.
a) Cho AB = 6 cm, AC = 8 cm. Tính độ dài AM.
b) Kẻ MD vuông góc với AB, ME vuông góc với AC. Tứ giác ADME là hình gì? Vì
sao?
c) Tứ giác DECB là hình gì? Vì sao?
d) Gọi H, I lần lượt là trung điểm của BM và CM. Chứng minh rằng: DH = EI.
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ADME là hình vuông?
1) Cho tam giác ABC, đường trung tuyến AD. Gọi M là trung điểm của AC,E là điểm đối xứng với D qua điểm M
a) Tứ giác ADCE là hình gì
b) C/m tứ giác AEDB là hình bình hành
c) Gọi K là trung điểm AD. Tính KM biết BC = 4cm
d) Tam giác ABC có điều kiện gì thì tứ giác ADCE là hình chữ nhật
e) Tam giác ABC có điều kiện gì thì tứ giác AEDB là hình chữ nhật
2) Cho tam giác ABC vuông tại A, đường cao AH. Gọi d,E lần lượt là hình chiếu của H trên AB và AC. M là trung điểm của BC
a) Tứ giác ADHE là hình gì ? Tại sao ?
b) Chứng minh góc BAH = góc CAM
c) Gọi I,J lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DIJE là hình thang vuông
d) Tam giác vuông ABC cần có thêm điều kiện gì để tứ giác DIJE là hình chữ nhật
Cho tam giác ABC (AB<AC), đường cao AH. Gọi M, N, E theo thứ tự là trung điểm của AB, AC, BC.
a) Tứ giác AMEN là hình gì? Vì sao?
b) CM: tứ giác MNEH là hình thang cân
c) Tam giác ABC cần có thêm điều kiện gì để MNEH là hình vuông.
Cho tam giác ABC vuông tại A, trung tuyến AM.
a) Cho AB = 6 cm, AC = 8 cm. Tính độ dài AM.
b) Kẻ MD vuông góc với AB, ME vuông góc với AC. Tứ giác ADME là hình gì? Vì
sao?
c) Tứ giác DECB là hình gì? Vì sao?
d) Gọi H, I lần lượt là trung điểm của BM và CM. Chứng minh rằng: DH = EI.
e) Tam giác ABC cần có thêm điều kiện gì để tứ giác ADME là hình vuông?
giúp tui nha plssss
a) tam giác abc vuông tại a, suy ra trung tuyến am ứng với cạnh huyền bc bằng 1/2 bc và = 5cm
b) tứ giác adme có â = 90o; d^ = 90o; ê = 90o => adme là hình chữ nhật
HT
Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB<AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB<AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?
Bài 1:
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Tối về mình làm nốt nhé giờ mình có việc
Bài 4 :
Để tứ giác ABCD là hình bình hành
\(\Leftrightarrow\hept{\begin{cases}\widehat{DAB}=\widehat{DCB}=120^o\\\widehat{ADC}=\widehat{ABC}\end{cases}}\)
Lại có : \(\widehat{DAB}+\widehat{DCB}+\widehat{ABC}+\widehat{ADC}=360^o\)
\(\Leftrightarrow\widehat{ABC}+\widehat{ADC}=120^o\)
\(\Leftrightarrow\widehat{ABC}=\widehat{ADC}=60^o\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm đường trung tuyến AM (M thuộc BC).
a, Tính AM.
b, Gọi H,K lần lượt là hình chiếu của M. Chứng minh AHMK là hình chữ nhật.
c, Tam giác vuông ABC thêm điều kiện gì để tứ giác AHMK là hình vuông
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi E, N lần lượt là trung điển của AB và AC
a) Tứ giác ANME là hình gì? Vì sao?
b) Chứng minh tứ giác EHMN là hình thang cân?
c) Tính sói đo góc EHN?
d) Từ A kẻ đường thẳng song song với BV cắt tia ME tại K. Tam giác ABC cần thêm điều kiện gì để tứ giác AKBM là hình vuông? Khi đó tứ giác EHMN là hình gì? Vì sao?
a) Tg ABC có N là trung điểm AC; E là trung điểm AB => NE là đường trung bình tgABC =>NE = 1/2 BC (1)
Tg ABC vuông tại A có AM là đường trung tuyến ứng với BC => AM = 1/2 BC (2)
Từ (1) và (2) => AM = EN => AEMN là hình thang cân. Lại có EAN =90 => AEMN là hình chữ nhật.
b) Do EN là đường trung bình tgABC => EN ss BC <=> EN ss MH => EHMN là hình thang (5)
Xét tgABC có N là trung điểm AC; M là trung điểm BC => NM =1/2.AB (3)
Tg AHB vuông ở H; HE là đường trung tuyến ứng với AB trong tg => HE = 1/2.AB (4)
Từ (3) và (4) => EH=MN. Kết hợp với (5) => EHMN là hình thang cân
c)Tg AHC vuông tại H; HN là đường trung tuyến úng với AC => HN = 1/2.AC => HN = AN (=1/2.AC)
=> Tg ANH cân tại N => HAN = NHA
CMTT => HAE = EHA
=> NHA + EHA = HAN + HEA = EAN = 90
Chú ý : Mk ko biết vẽ hình trên này nên bn tự vẽ nha! Đợi mk nghĩ nốt ý d) nhé!
Kí tự: tg(Tg) là tam giác; ss là song song
Chọn cho mik :)
Cho tam giác ABC (AB<AC) và đường cao AH. Gọi M, N ,P lần lượt là trung điểm của các cạnh
AB, AC, BC.
a)Chứng minh: tứ giác BCNM là hình thang.
b)Chứng minh: tứ giác MNPB là hình bình hành.
c) Chứng minh: tứ giác HPNM là hình thang cân.
d)Tam giác ABC cần có điều kiện gì để tứ giác HPNM là hình chữ nhât. Hãy giải thích điều đó.
a) Xét \(\Delta\)ABC ta có :
M là trung điểm AB
N là trung điểm AC
=> MN là đường trung bình
=> MN//BC , MN = 1/2 BC (1)
=> MNCB là hình thang
b) Xét tam giác ABC ta có :
N , P là trung điểm AC , BC (2)
=> NP là đường trung bình
Từ (1) và (2) => MNPB là hình bình hành