Tìm quan hệ giữa a, b, c để phương trình \(\left(x+a\right)^4+\left(x+b\right)^4=c\) có nghiệm.
Tìm mối quan hệ giữa a,b,c để phương trình \(\left(x+a\right)^4+\left(x+b\right)^4=c\) có nghiệm ?
Đề bài => \(c\ge0\)
Đặt \(t=x+\frac{a+b}{2}\)
=> \(\left(t+\frac{a-b}{2}\right)^4+\left(t-\frac{a-b}{2}\right)^4=c\)
<=> \(2t^4+\frac{6t^2\left(a-b\right)^2}{4}.2+\frac{\left(a-b\right)^4}{8}=c\)
<=> \(2t^4+3t^2\left(a-b\right)^2+\frac{\left(a-b\right)^4}{8}-c=0\left(1\right)\)
Ta có \(\Delta=9\left(a-b\right)^4-\left(a-b\right)^4+8c=8\left(a-b\right)^4+8c\ge0\)
=> \(\left(a-b\right)^4+c\ge0\)luôn đúng \(\forall c\ge0\)
Để PT ban đầu có nghiệm
thì Pt (1) có ít nhất 1 nghiệm dương
=> \(\frac{-3\left(a-b\right)^2+\sqrt{\left(a-b\right)^4+c}}{4}\ge0\)
=> \(c\ge8\left(a-b\right)^4\)
Vậy Pt ban đầu có nghiệm khi \(c\ge8\left(a-b\right)^4\ge0\)
cho phương trình \(a\left|x+2\right|+a\left|x-1\right|=b\). tìm hệ thức giữa a và b để phương trình có 2 nghiệm khác nhau
Cho phương trình\(\left(m-1\right)x^2-2\left(m-3\right)x+m-4\) . Tìm m để phương trình có hai nghiệm
a) Trái dấu
b) Hai nghiệm dương
c) Hai nghiệm âm
a.
Phương trình có 2 nghiệm trái dấu khi:
\(ac< 0\Leftrightarrow\left(m-1\right)\left(m-4\right)< 0\)
\(\Rightarrow1< m< 4\)
b.
Phương trình có 2 nghiệm dương khi (ko có chữ phân biệt?):
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}>0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< 1\\4< m\le5\end{matrix}\right.\)
c.
Phương trình có 2 nghiệm âm khi:
\(\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m-3\right)^2-\left(m-1\right)\left(m-4\right)\ge0\\x_1+x_2=\dfrac{2\left(m-3\right)}{m-1}< 0\\x_1x_2=\dfrac{m-4}{m-1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\le5\\1< m< 3\\\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Tìm điều kiện của a, b, c để các phương trình sau có nghiệm kép:
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\)
\(\Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\)
Pt có nghiệm kép khi và chỉ khi:
\(\Delta'=\left(a+b+c\right)^2-3\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Cho hệ phương trình
\(\left\{{}\begin{matrix}x+my=4\\nx+y=-3\end{matrix}\right.\)
a/ Tìm m, n để hệ phương trình có nghiệm : (x;y) = (-2 ;3)
b/ Tìm m , n để hệ phương trình có vô số nghiệm
a Để hpt có nghiệm \(\left(x;y\right)=\left(-2;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}-2+3m=4\\-2n+3=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3m=6\\-2n=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=2\end{matrix}\right.\)
b Để hpt có vô số nghiệm \(\Leftrightarrow\dfrac{1}{n}=\dfrac{m}{1}=\dfrac{4}{-3}\) \(\left(\dfrac{a}{a'}=\dfrac{b}{b'}=\dfrac{c}{c'}\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{n}=-\dfrac{4}{3}\\m=-\dfrac{4}{3}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{4}{3}\\n=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy...
Bài 1: Cho hệ phương trình: \(\hept{\begin{cases}x+y=2a-1\\x^2+y^2=a^2+2a-3\end{cases}}\)
Giả sử (x; y) là nghiệm của hệ phương trình. Xác định a để xy đạt GTNN. Tìm GTNN đó.
Bài 2: Giải hệ phương trình: \(\hept{\begin{cases}\left(c+a\right)y+\left(a+b\right)z-\left(b+c\right)x=2a^3\\\left(a+b\right)z+\left(b+c\right)x-\left(c+a\right)y=2b^3\\\left(b+c\right)x+\left(c+a\right)y-\left(a+b\right)z=2c^3\end{cases}}\)
Đặt S=x+y, P=x.y
Ta có:S=2a-1, x^2+y^2=S^2-2P=a^2+2a-3
\Rightarrow P=\frac{1}{2}[(2a-1)^2-(a^2+2a-3)]=\frac{1}{2}(3a^2-6a+4)
Trước hết tìm a để hệ có nghiệm.
Điều kiện để hệ có nghiệm:S^2-4P \geq 0 \Leftrightarrow (2a-1)^2-2(3a^2-6a+4)\geq 0
\Leftrightarrow -2a^2+8a-7 \geq 0 \leftrightarrow 2-\frac{\sqrt{2}}{2} \leq a \leq 2+\frac{\sqrt{2}}{2} (1)
Tìm a để P=\frac{1}{2}(3a^2-6a+4) đạt giá trị nhỏ nhất trên đoạn
[2-\frac{\sqrt{2}}{2} ;2+\frac{\sqrt{2}}{2}]
Ta có hoành độ đỉnh a_0=\frac{6}{2.3}=1Parabol có bề lõm quay lên do đó \min P=P(2-\frac{\sqrt{2}}{2} )$
Vậy với a=2-\frac{\sqrt{2}}{2} thì xy đạt giá trị nhỏ nhất.
Cho phương trình (ẩn x): \(\left(m^2-4\right)x^2+2\left(m+2\right)x+1=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có nghiệm duy nhất
\(a,\Leftrightarrow\Delta'\ge0\\ \Leftrightarrow\left(m+2\right)^2-\left(m^2-4\right)\ge0\\ \Leftrightarrow m^2+4m+4-m^2+4\ge0\\ \Leftrightarrow4m+8\ge0\\ \Leftrightarrow m\ge-2\\ b,\Leftrightarrow\Delta'=0\Leftrightarrow m=-2\)
Cho hệ phương trình
\(\hept{\begin{cases}2x+y=4\\\left(a-1\right)x-2y=3\end{cases}}\)
a,giải hệ phương trình khi a=-1
b,tìm a để hệ phương trình vô nghiệm
c,tìm a để hệ phương trình có 1 nghiệm
BÀI1. Cho phương trình : \(mx^2-\left(2m+3\right)x+m-4=0\)
a) Tìm m để phương trình có hai nghiệm phân biệt x1, x2.
b) Tìm hệ thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc m.
BÀI2. Cho phương trình : \(\left(m-1\right)x^2-2mx+m+1=0\)
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt x1,x2
b) Xác định m để phương trình có 2 nghiệm bằng 5. Từ đó tính tổng 2 nghiệm của phương trình.
c) Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc x.