Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ko cần bít
Xem chi tiết
Herimone
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 9:55

undefined

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 11:38

c.

Ta có:

\(sinB=\dfrac{AC}{BC}\)

\(cosC=\dfrac{AC}{BC}\)

\(\Rightarrow cosC=sinB\)

Lại có: \(cosB=\dfrac{AB}{BC}\)

\(\Rightarrow sin^2B+cos^2B=\dfrac{AC^2}{BC^2}+\dfrac{AB^2}{BC^2}=\dfrac{AC^2+AB^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\)

Do đó:

\(\dfrac{sinB+5cosC}{sin^4B+cos^4B+2sin^2B.cos^2B}=\dfrac{sinB+5sinB}{\left(sin^2B+cos^2B\right)^2}=\dfrac{6sinB}{1^2}=6sinB\) (đpcm)

Nguyễn Việt Lâm
21 tháng 7 2021 lúc 11:39

undefined

My Trấn
Xem chi tiết
Cô Hoàng Huyền
16 tháng 10 2017 lúc 9:04

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng m: Đoạn thẳng [E, H] Đoạn thẳng n: Đoạn thẳng [F, H] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [A, M] A = (-1.98, 1.26) A = (-1.98, 1.26) A = (-1.98, 1.26) C = (7.12, 1.2) C = (7.12, 1.2) C = (7.12, 1.2) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm H: Giao điểm đường của j, i Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm E: Giao điểm đường của k, h Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm F: Giao điểm đường của l, f Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C Điểm M: Trung điểm của B, C

a) Xét tam giác AEH và tam giác AHB có:

\(\widehat{AEH}=\widehat{AHB}=90^o\)

Góc A chung

\(\Rightarrow\Delta AEH\sim\Delta AHB\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{AE}{AH}\Rightarrow AE.AB=AH^2\)

Tương tự \(\Delta AHF\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AH}{AC}=\frac{AF}{AH}\Rightarrow AF.AC=AH^2\)

Xét tam giác vuông ABC có AH là đường cao nên áp dụng hệ thức lượng trong tam giác ta có:

\(HB.HC=AH^2\)

Vậy nên ta có AE.AB = AF.AC = HB.HC

b)   Ta có \(\Delta AHC\sim\Delta BAC\left(g-g\right)\Rightarrow\frac{AH}{AB}=\frac{HC}{AC}\Rightarrow AH.AC=AB.HC\)

\(\Rightarrow AB.AH.AC=AB.AB.HC\Rightarrow\left(AB.AC\right).AH=AB^2.HC\)

\(\Rightarrow BC.AH.AH=AB^2.HC\Rightarrow AH^2.BC=AB^2.HC\)

\(\Rightarrow\frac{AH^2}{AB^2}=\frac{CH}{BC}\Rightarrow\left(\frac{AH}{AB}\right)^2=\frac{CH}{BC}\Rightarrow sin^2B=\frac{CH}{BC}\) 

c) Xét tam giác vuông ABC có AH là đường cao, áp dụng hệ thức lượng trong tam giác ta có :

\(AC^2=HC.BC\)

Lại có AM là đường trung tuyến ứng với cạnh huyền nên BC = 2AM.

Suy ra \(AC^2=HC.2.AM\Rightarrow\frac{1}{AM}=\frac{2HC}{AC^2}\Rightarrow\frac{AH}{AM}=2.\frac{AH}{AC}.\frac{HC}{AC}\)

\(\Rightarrow sin\widehat{AMB}=2.sin\widehat{ACB}.cos\widehat{ACB}\)

Hong Van Thai Thi
Xem chi tiết
mo chi mo ni
2 tháng 10 2018 lúc 22:39

A B C H I K M 1

a, muộn rồi nên mk làm qua loa nha!

Dễ cm được AKHI là hình chữ nhật \(\Rightarrow AH=IK\)

Áp dụng hệ thức lượng cho \(\Delta ABC\) \(\Rightarrow IK^2=AH^2=BH.HC\)

b, \(Sin^2B=\left(\dfrac{AC}{BC}\right)^2\) \(=\dfrac{AC^2}{BC^2}\) (1)

theo hệ thức lượng: \(AC^2=HC.BC\) 

Thay vào (1)\(\Rightarrow Sin^2B=\dfrac{HC.BC}{BC^2}=\dfrac{HC}{BC}\)

Nguyễn Hoàng trung
Xem chi tiết
An Thy
7 tháng 6 2021 lúc 17:47

a) \(1+tan^2B=1+\dfrac{AC^2}{AB^2}=\dfrac{AB^2+AC^2}{AB^2}=\dfrac{BC^2}{AB^2}=\dfrac{1}{\left(\dfrac{AB}{BC}\right)^2}=\dfrac{1}{cos^2B}\)

b) Ta có: \(a.sinB.cosB=BC.\dfrac{AC}{BC}.\dfrac{AB}{BC}=\dfrac{AC.AB}{BC}=\dfrac{AH.BC}{BC}=AH\)

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=BC.\left(\dfrac{AB}{BC}\right)^2=BC.cos^2B\)

Tương tự \(\Rightarrow CH=BC.sin^2B\)

Nguyễn Phương Thảo Vũ
Xem chi tiết
Bill Gates
23 tháng 8 2020 lúc 11:45
Câu a)Nhãncâu bNhãn
Khách vãng lai đã xóa
Neko Chan
Xem chi tiết
Quỳnh Anh Đỗ
20 tháng 7 2017 lúc 16:24

ban nay hoc thay lop Nguyen a?

Phạm Minh Hiếu
Xem chi tiết
vũ trần
19 tháng 8 2017 lúc 21:00

Tính AH: AH= BH * CH
             => AH = 12
Tính AB : AB= AH+ BH2
                => AB = 15

            sin C = \(\frac{AB}{BC}\)
            AC= BC2  - AB2
              => AC= 20

Cos C = \(\frac{AC}{BC}\)
Tan B = \(\frac{AC}{AB}\)

Mình chỉ viết gợi ý thôi, k chi tiết lắm
 

Nguyễn Thị Ngọc Trâm
19 tháng 8 2017 lúc 21:16

A B C H 9 16

ta có BC = BH + HC = 9 + 16 = 25

\(\Delta\)ABC vuông tại A có đường cao AH

AB^2 = BH.BC = 9.25 =225

=> AB = 15

AC^2 = HC.BC = 16.25 = 400

=> AC = 20

sin C = \(\frac{AB}{BC}\)\(\frac{15}{25}\)=\(\frac{3}{5}\)

cos C =\(\frac{AC}{BC}=\frac{20}{25}=\frac{4}{5}\)

tan B = \(\frac{AC}{AB}\frac{20}{15}\frac{4}{3}\)

Đỗ Thanh Huyền
Xem chi tiết