Chứng minh rằng C=1/3 +1/3^2+1/3^3+1/3^99<1/2
cho C=1/3+1/3^2+1/3^3+...+1/3^99.Chứng minh rằng C<1/2
Cho C= 1/3 + 1/32 + 1/33 +..........+ 1/399
chứng minh rằng : C <1/2
C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )
2C= 1 - \(\frac{1}{3^{99}}\)< 1
\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)
Điều Phải Chứng Minh
chứng minh rằng 1/3+1/3^2+1/3^3+...+1/3^99<1/2
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)
\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)
\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)
\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)
Vậy \(A< \frac{1}{2}.\)
Chúc bạn học tốt!
C=1/3+1/32+1/33+...+1/399.Chứng minh rằng C<1/2
Chứng minh rằng : A = 1/3+1/3^2+1/3^3+...+1/3^99<1/2
chứng minh rằng M=1/3+1/3^2+1/3^3+......+1/3^99 < 1/2
M=1/3+1/3^2+...+1/3^99
3M=1+1/3+1/3^2+...+1/3^98
3M+1/3^99=1+1/3+...+1/3^99=1+M
3M-M=1-1/3^99
2M=1-1/3^99
M=(1-1/3^99)/2
Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2
Vậy M<1/2
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
cho A: 1/3+1/3^2+1/3^3+...+1/3^99 chứng minh rằng A<1/2
Chứng minh rằng 1/3 + 1/3^2 + ... + 1/3^99 <1/2