Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
I love dễ thương
Xem chi tiết
Nguyễn Trà Linh
Xem chi tiết
kudo shinichi
20 tháng 9 2017 lúc 11:08

C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

2C= 1 - \(\frac{1}{3^{99}}\)< 1

\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)

                                         Điều Phải Chứng Minh

Hoa nguyen
Xem chi tiết
Vũ Minh Tuấn
13 tháng 10 2019 lúc 17:40

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}.\)

\(\Rightarrow\frac{1}{3}A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow A-\frac{1}{3}A=\left(\frac{1}{3^2}-\frac{1}{3^3}\right)+\left(\frac{1}{3^3}-\frac{1}{3^3}\right)+...+\left(\frac{1}{3}-\frac{1}{3^{100}}\right)\)

\(\Rightarrow\frac{2}{3}A=\frac{1}{3}-\frac{1}{3^{100}}< \frac{1}{3}.\)

\(\Rightarrow A< \frac{1}{3}:\frac{2}{3}\)

\(\Rightarrow A< \frac{1}{2}\left(đpcm\right)\)

Vậy \(A< \frac{1}{2}.\)

Chúc bạn học tốt!

Nguyen Dinh Minh
Xem chi tiết
Nguyễn Minh Hải
Xem chi tiết
quyên trần
Xem chi tiết
Đỗ Lê Tú Linh
14 tháng 11 2015 lúc 15:57

M=1/3+1/3^2+...+1/3^99

3M=1+1/3+1/3^2+...+1/3^98

3M+1/3^99=1+1/3+...+1/3^99=1+M

3M-M=1-1/3^99

2M=1-1/3^99

M=(1-1/3^99)/2 

Vì 1-1/3^99 <1 nên (1-1/3^99)/2<1/2

Vậy M<1/2

phạm quốc bảo
Xem chi tiết
Scorpio love Math
Xem chi tiết
Bảo Châu Trần
Xem chi tiết