Cho 1/1+a. +1/1+b +1/1+c>=2 CM abc<=1/8 [ cho a,B,c >0]
Cho 3 số a,b,c thỏa mãn :a+b+c=1 CM:1/(a+b)^2+1/(b+c)^2+1/(c+a)^2+2/(a+1)(b+1)(c+1)>=1
a) Cho (a + b + c + 1)(a - b - c + 1) = (a - b + c - 1)(a + b - c - 1)
Cm : a = bc
b) Cho a = b + c. Cm \(\frac{a^3+b^3}{a^3+b^3}=\frac{a+b}{a+c}\)
c) cho a + b + c = abc;\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=c\)
Cm \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Cho a,b,c>0 thỏa mãn a+b+c=3 Cm\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
\(\dfrac{1}{a^2+a+1}+\dfrac{1}{b^2+b+1}+\dfrac{1}{c^2+c+1}\ge1\)
\(\dfrac{1}{a^2+a+1}\ge\dfrac{1}{a^2+\dfrac{a^2+1}{2}+1}=\dfrac{2}{3}.\dfrac{1}{a^2+1}=\dfrac{2}{3}\left(1-\dfrac{a^2}{a^2+1}\right)\ge\dfrac{2}{3}\left(1-\dfrac{a}{2}\right)\)
Tương tự và cộng lại: \(VT\ge\dfrac{2}{3}\left(3-\dfrac{a+b+c}{2}\right)=\dfrac{2}{3}.\dfrac{3}{2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 3: cho a+b+c =1 và 1/a+1/b+1/c =0. Cm a^2+b^2+c^2=1
Ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Leftrightarrow\dfrac{bc+ac+ab}{abc}=0\)
\(\Leftrightarrow ab+bc+ca=0\) (*)
Lại có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1^2\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)
Kết hợp với (*) \(\Leftrightarrow a^2+b^2+c^2=1\)(đpcm)
Ta có: \(a+b+c=1\)
\(\Rightarrow\left(a+b+c\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\left(1\right)\)
Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
\(\Rightarrow2.\left(ab+bc+ca\right)=0\left(2\right)\) ( Nhân 2 vế cho 2abc khác 0 )
Lấy \(\left(1\right)\) trừ \(\left(2\right)\) vế theo vế ta được \(a^2+b^2+c^2=1\)
\(\Rightarrow\) Đpcm.
cho a,b,c,d thuộc N* b = a+c/2; 1/c = 1/2(1/b + 1/d) . cm a/b = c/d
Cho a,b,c
a+b+c=1
CM a/a+b^2 + b/b+c^2 +c/c+a^2 =< 1/4.(1/a+1/b+1/c)
Cho a+b+C=1 và 1/a + 1/b + 1/c =0 Cm a2+b2+c2=1
Cho a, b ,c >0. CM: \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
* Áp dụng BĐT \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với $x,y>0$ vào bài toán có :
\(\dfrac{1}{4}\cdot\left(\dfrac{4}{a+b}\right)\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\dfrac{1}{4}\left(\dfrac{4}{b+c}\right)\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\dfrac{1}{4}\left(\dfrac{4}{c+a}\right)\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế với vế các BĐT có :
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cho 1/c=1/2 (1/a+1/b( với a,b,c khác 0 ; b khác c)
CM rằng a/b = a-c/c-b
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\\ \Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\\ \Rightarrow ac+bc=2ab\)
Giả sử \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\Rightarrow ac-ab=ab-bc\Rightarrow ac+bc=2ab\left(\text{luôn đúng}\right)\)
Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)