\(\dfrac{2}{x+1}=\dfrac{x}{66}\)
1/ Tìm x,y biết:
a/ \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và x+y=-21
b/ 7x = 3y và x-y=16
c/ \(\dfrac{x}{y}\) = \(\dfrac{5}{9}\) và 3x+2x=66
d/ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) và x-2y=16
e/ \(\dfrac{x}{5}\) = \(\dfrac{y}{2}\) và x × y = 1000
2/ Tìm x,y,z biết
\(\dfrac{x}{13}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{5}\) và x-y-z=6
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{13}-\frac{y}{7}-\frac{z}{5}=\frac{x-y-z}{13-7-5}=\frac{6}{1}=6$
$\Rightarrow x=13.6=78; y=7.6=42; z=5.6=30$
tìm x biết : \(\dfrac{44xX}{66}=\) \(\dfrac{1}{3}\) . X = ......
\(\Leftrightarrow\dfrac{2}{3}x=\dfrac{1}{3}x\)
=>x=0
\(\dfrac{x}{6}\)+\(\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)
Tìm x ạ
\(x.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+...+\dfrac{1}{78}\right)=\dfrac{220}{39}\)
\(x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(x=\dfrac{220}{39}:\dfrac{20}{39}\)
x\(=11\)
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)
⇔ \(x.\left(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}+\dfrac{1}{66}+\dfrac{1}{78}\right)\) \(=\) \(\dfrac{220}{39}\)
⇔ \(x.\dfrac{20}{39}=\dfrac{220}{39}\)
⇔ \(x=11\)
cho x:z=\(\dfrac{2}{3}:\dfrac{1}{2};z:y=1:\dfrac{4}{7}\)và y+z=66. Khi đó x+y+z=..........................
Ta có :
\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{z}{0,5};\dfrac{z}{1}=\dfrac{y}{\dfrac{4}{7}}\)
\(\Leftrightarrow\)\(\dfrac{x}{\dfrac{16}{3}}=\dfrac{z}{4}=\dfrac{y}{\dfrac{16}{7}}\)
\(\Rightarrow\)\(\dfrac{z+y}{4+\dfrac{16}{7}}=\dfrac{66}{\dfrac{44}{7}}=10,5\)
[ \(\dfrac{z}{4}=10,5\Rightarrow z=42\) ]
[ \(\dfrac{y}{\dfrac{16}{7}}=10,5\Rightarrow y=24\) ]
[\(\dfrac{x}{\dfrac{16}{3}}=10,5\Rightarrow x=56\) ]
Vậy \(x+y+z=42+24+56=122\)
Tìm x biết \(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{220}{39}\)
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+........+\dfrac{x}{78}=\dfrac{220}{39}\)
\(\Leftrightarrow\dfrac{2x}{12}+\dfrac{2x}{20}+........+\dfrac{2x}{156}=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+..........+\dfrac{1}{12.13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x\left(\dfrac{1}{3}-\dfrac{1}{13}\right)=\dfrac{220}{39}\)
\(\Leftrightarrow2x.\dfrac{10}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x.\dfrac{20}{39}=\dfrac{220}{39}\)
\(\Leftrightarrow x=11\)
Vậy ...
Tìm số nguyên xx, thỏa mãn:\dfrac{6}{x}=\dfrac{-66}{77}.x6=77−66
Bài 1 : Tìm x,y,z biết :
a) 2x = 3y ; 5y = 7z và 3x - 7y + 5z = -30
b) 3x =5y ; 7y = 2z và x + y + z = 74
c) x : z = \(\dfrac{2}{3}\) : \(\dfrac{1}{2}\) ; z : y = 1 : \(\dfrac{4}{7}\) và y + z = 66
d) x : y : z = 3 : 4 : 5 và \(2x^2\) + \(2y^2\) - \(3z^2\) = -100
e) \(x:y:z\) = 2 : 5 : 6 và \(2x^2\) + \(4y^2\) - \(4z^2\) = -324
f) \(\dfrac{x-1}{2}\) = \(\dfrac{y-2}{3}\) = \(\dfrac{z-3}{4}\) và \(x-2y+3z=14\)
g)\(\dfrac{x-1}{2}\) = \(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{6}\) và \(5z-3x-4y=50\)
h) \(\dfrac{x}{2}=\dfrac{y}{7}\) và \(xy=56\)
i)\(\dfrac{x-y}{3}=\dfrac{x+y}{13}=\dfrac{xy}{200}\)
k) \(\dfrac{x-5}{6}=\dfrac{x+5}{18}\)
l) \(\dfrac{2x-11}{12}=\dfrac{x+5}{20}\)
tìm x:
x : 33 = \(\dfrac{9}{66}\) \(\dfrac{4}{5}\) x \(x\) = \(\dfrac{10}{11}\) :\(\dfrac{3}{4}\)
\(x:33=\dfrac{9}{66}\)
\(x=\dfrac{9}{66}\times33\)
\(x=\dfrac{9}{2}\)
\(\dfrac{4}{5}\times x=\dfrac{10}{11}:\dfrac{3}{4}\)
\(\dfrac{4}{5}\times x=\dfrac{40}{33}\)
\(x=\dfrac{40}{33}:\dfrac{4}{5}\)
\(x=\dfrac{50}{33}\)
#Đạt Đang Bận Thở
Tìm số nguyên x, biết:
\(\dfrac{x}{6}+\dfrac{x}{10}+\dfrac{x}{15}+\dfrac{x}{21}+\dfrac{x}{28}+\dfrac{x}{36}+\dfrac{x}{45}+\dfrac{x}{55}+\dfrac{x}{66}+\dfrac{x}{78}=\dfrac{200}{39}\)
Gọi biểu thức là A
\(A=\dfrac{2x}{12}+\dfrac{2x}{20}+\dfrac{2x}{30}+....+\dfrac{2x}{156}=\dfrac{200}{39}\)
Ta có công thức :
\(\dfrac{a}{b.c}=\dfrac{a}{c-b}.\left(\dfrac{1}{b}-\dfrac{1}{c}\right)\)
Áp dụng công thức trên, ta có :
\(A=\dfrac{2x}{3.4}+\dfrac{2x}{4.5}+\dfrac{2x}{5.6}+....+\dfrac{2x}{12.13}\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+....+\dfrac{1}{12}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
\(A=2x.\left(\dfrac{10}{39}\right)=\dfrac{200}{39}\)
\(A=2x=\dfrac{200}{39}:\dfrac{10}{39}\)
\(2x=20\)
\(\Rightarrow x=10\)
mink nghĩ vậy bạn ạ