x + 15 = 35
x - 20 = 10
x . 7 = 14
Tìm x biết
a). 3x-4/2x+5=3x+7/2x-20
b). 10x-5/7x+2=50x+10/35x-29
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)
1 tính nhanh
13 x 58 x 4 + 32 x 36 x2 +52 x 10
14 x 35 x 5 + 10x 25 x 7 +20 x 70
24 x (15 +49) +12x (50+42)
Tìm x
A. 31x - 3x -5x +25
B. 15(x -2) + 3(5-1) = -14
C. 4x (41 -52) -35x = -(7-2x)
D. 53 -(3x -17) + 218= 19 + 45x
Tính giá trị biểu thức :
P(x) = x^7 - 80x^6 + 80x^5 - 80x^4 +.......+ 80x + 15 với x = 79
Q(x) = x^14 - 10x^13 + 10x^12 - 10x^1+.....+ 10x^2 - 10x + 10 với x=9
a) Ta có: \(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-x^6\left(x+1\right)+x^5\left(x+1\right)-...+x\left(x+1\right)+15\)
\(=x^7-x^7-x^6+x^6+x^5-...+x^2+x+15\)
\(=x+15\)
Thay x=79 vào biểu thức \(P\left(x\right)=x+15\), ta được:
\(P\left(79\right)=79+15=94\)
Tính gtrị biểu thức sau :
M=x14-10x13+10x12-10x11+........+10x2-10x+10 tại x=9
N=x7-80x6+80x5-80x4+80x3-80x2+80x+15 tại x=79
P=x10-15x9+15x8-15x7+......+15x2-15x+15 tại x=14
Tham khảo:
https://hoc24.vn/hoi-dap/question/278669.html
Ý 2 nè:
https://hoc24.vn/hoi-dap/question/97085.html
từ đó rồi tiếp tục nha bạn
M=x14 -(x+1)x13+(x+1)x12-(x+1)x11+...+(x+1)x2-(x+1)x+x+1
M=x14-x14-x13+x13+x12-x12-x11+...+x3+x2-x2+x+1
M=1
Vậy m=1 tai x=9
Tính giá trị của đa thức
a) P(x)= x^7 - 80x^6 + 80x^5 - 80x^4+....+80x +15 với x=79
b) Q(x)= x^14 - 10x^13 +10x^12-10x^11+...+10x^2-10x+10 với x=9
c) R(x)=x^4-17x^3+17x^2-17x+20 với x=16
d) S(x)=x^10 -13x^9+13x^8-13x^7+...+13x^2-13x+10 với x=12
Mọi người giúp em bài này với , em đang cần gấp lắm ạ! Em cảm ơn mọi người trc ạ! Mọi người làm hộ em vs ạ
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
1) Tính giá trị của đa thức
a) P(x) = x7 - 80x6 + 80x5 - 80x4 +...+ 80x + 15 với x = 79
b) Q(x) = x14 - 10x13 + 10x12 - 10x11 +...+ 10x2 - 10x + 10 với x = 9
c) R(x) = x4 - 17x3 + 17x2 - 17x + 20 với x = 16
d) S(x) = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 với x = 12
a, x = 79 => x + 1 = 80
Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)
\(=x+15=79+15=94\)
Còn lại tương tự
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
1) Tính giá trị của đa thức
a) P(x) = x7 - 80x6 + 80x5 - 80x4 +...+ 80x + 15 với x = 79
b) Q(x) = x14 - 10x13 + 10x12 - 10x11 +...+ 10x2 - 10x + 10 với x = 9
c) R(x) = x4 - 17x3 + 17x2 - 17x + 20 với x = 16
d) S(x) = x10 - 13x9 + 13x8 - 13x7 +...+ 13x2 - 13x + 10 với x = 12
Lời giải:
a) Với \(x=79\)
\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)
b) Hoàn toàn tương tự phần a.
\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)
\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)
c)
\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$
d)
\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)
\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)
\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)
Bài:Chia 1 biến đã sắp xếp 1)(2x^3+11x^2+18x-3):(2x+3) 2)(2x^3+11x^2+18x-3):(3x+3) 3)(2x^3+9x^2+5x+41):(2x^2-x+9) 4)(13x+41x^2+35x^3-14):(5x-2) 5)(5x^2-3x^3+15-9x):(5-3x) 6)(-4x^2+x^3-20+5x):(x-4)
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)
Tính \(P\left(x\right)=x^7-80^6+80^5-80^4+....+15\)tại x =79
\(Q\left(x\right)=x^{14}-10x^{13}+10x^{12}-10x^{11}+....+10x^2-10x+10\) Tại x=9
x=9
\(9^{14}-10.9^{13}+10.9^{12}-10.9^{11}+..+10.9^2-10.9+10\)
\(9^{14}-\left(9+1\right).9^{13}+\left(9+1\right).9^{12}+..+\left(9+1\right).9^2-\left(9+1\right)9+10\)
\(9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-..+9^3+9^2-9^2-9+10=1\)
Vậy......