Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
シHoàn
Xem chi tiết
blueesky~~~
13 tháng 10 2021 lúc 19:48

\(\dfrac{x}{3}=\dfrac{y}{4}\)
Ta có: \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}\)=2
\(\dfrac{x}{3}=2=>x=6\)
*\(\dfrac{y}{4}=2=>y=8\)
Vậy( x, y) ∈{ 6, 8}
Kiểm tra lại nhaa

Tử-Thần /
13 tháng 10 2021 lúc 19:50

áp dụng tính chất dãy tỉ số bằng nhau

Ta có:x/3=y/4=x+y/3+4=14/7=2

Vậy x=2.3=6

       y=2.4=8

35. Trần Nguyệt Phương T...
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 20:28

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

Phạm Vũ Hà My
Xem chi tiết
ILoveMath
19 tháng 11 2021 lúc 15:50

a, áp dụng t/c dtsbn ta có:

\(\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{2.\left(-10\right)-3.6}-\dfrac{76}{-38}=-2\)

\(\dfrac{x}{-10}=-2\Rightarrow x=20\\ \dfrac{y}{6}=-2\Rightarrow y=-12\)

b, áp dụng t/c dtsbn ta có:

\(\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{2.4+5.5}=\dfrac{66}{33}=2\)

\(\dfrac{x}{4}=2\Rightarrow x=8\\ \dfrac{y}{5}=2\Rightarrow y=10\)

Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 15:51

\(a,\dfrac{x}{-10}=\dfrac{y}{6}=\dfrac{2x-3y}{-20-18}=\dfrac{76}{-38}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=20\\y=-12\end{matrix}\right.\\ b,\dfrac{x}{4}=\dfrac{y}{5}=\dfrac{2x+5y}{8+25}=\dfrac{66}{33}=2\\ \Rightarrow\left\{{}\begin{matrix}x=8\\y=10\end{matrix}\right.\)

Phạm Thùy Linh ( team ❤️...
Xem chi tiết
Phạm Nguyễn Gia Phú
4 tháng 10 lúc 20:19

1,7y

Đinh Kiều Anh
Xem chi tiết
Đoàn Ngọc Châm
14 tháng 3 2023 lúc 21:33

Học thầy chẳng học được 

Vân Nguyễn Thị
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 20:44

\(\dfrac{x}{y}=\dfrac{-3}{4}\)

\(\dfrac{x}{-3}=\dfrac{y}{4}\) 

\(\dfrac{2x}{-6}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x}{-6}=\dfrac{3y}{12}=\dfrac{3y-2x}{12-\left(-6\right)}=\dfrac{36}{18}=2\)

\(\left\{{}\begin{matrix}x=2.-3=-6\\y=2.4=8\end{matrix}\right.\)

Giấu- Ñỗißuồn- VàoMưą-
Xem chi tiết
Vi
Xem chi tiết
Akai Haruma
29 tháng 12 2022 lúc 18:37

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

Đạt Trần
Xem chi tiết
Hồng Phúc
17 tháng 4 2021 lúc 12:13

1.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=-\dfrac{5}{4}\\x^4+y^2+xy\left(1+2x\right)=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2+y\right)+xy+xy\left(x^2+y\right)=-\dfrac{5}{4}\\\left(x^2+y\right)^2+xy=-\dfrac{5}{4}\end{matrix}\right.\left(1\right)\)

Đặt \(\left\{{}\begin{matrix}x^2+y=a\\xy=b\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}a+b+ab=-\dfrac{5}{4}\\a^2+b=-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-a^2-\dfrac{5}{4}-a\left(a^2+\dfrac{5}{4}\right)=-\dfrac{5}{4}\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a^3-\dfrac{1}{4}a=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a\left(a^2-a+\dfrac{1}{4}\right)=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\left(a-\dfrac{1}{2}\right)^2=0\\b=-a^2-\dfrac{5}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=0\\xy=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\sqrt[3]{10}}{2}\\y=-\dfrac{5}{2\sqrt[3]{10}}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y=\dfrac{1}{2}\\xy=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)

Kết luận: Phương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(\dfrac{\sqrt[3]{10}}{2};-\dfrac{5}{2\sqrt[3]{10}}\right);\left(1;-\dfrac{3}{2}\right)\right\}\)

Nguyễn Việt Lâm
17 tháng 4 2021 lúc 12:41

2.

\(\left\{{}\begin{matrix}\left(x+1\right)^3-16\left(x+1\right)=\left(\dfrac{2}{y}\right)^3-4\left(\dfrac{2}{y}\right)\\1+\left(\dfrac{2}{y}\right)^2=5\left(x+1\right)^2+5\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+1=u\\\dfrac{2}{y}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^3-16u=v^3-4v\\v^2=5u^2+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}u^3-v^3=16u-4v\\4=v^2-5u^2\end{matrix}\right.\)

\(\Rightarrow4\left(u^3-v^3\right)=\left(16u-4v\right)\left(v^2-5u^2\right)\)

\(\Leftrightarrow21u^3-5u^2v-4uv^2=0\)

\(\Leftrightarrow u\left(7u-4v\right)\left(3u+v\right)=0\Rightarrow\left[{}\begin{matrix}u=0\Rightarrow v^2=4\\u=\dfrac{4v}{7}\Rightarrow4=v^2-5\left(\dfrac{4v}{7}\right)^2\\v=-3u\Rightarrow4=\left(-3u\right)^2-5u^2\end{matrix}\right.\) 

\(\Rightarrow...\)