xmu2+ymu2+zmu2+2xy+2yz+2zx = (x+y+z)mu2
3.cm
a)neu xmu2+ymu2+zmu2=x+xy+yz+xz thi x=y=z
b)neu x+ y+ z=0 thi xmu3 + ymu3 +zmu3=3xyz
Chứng minh đẳng thức:
a, ( x - y - z )2 = x2 + y2 + z2 - 2xy + 2yz - 2zx
b, ( x + y - z )2 = x2 + y2 + z2 + 2xy - 2yz - 2zx
a.\(\left(x^2-y^2-z^2\right)=\left(x-y\right)^2-2z\left(x-y\right)+z^2=x^2-2xy+y^2-2zx+2zy+z^2\)
b.\(\left(x+y-z\right)^2=\left(x+y\right)^2-2z\left(x+y\right)+z^2=x^2+2xy+y^2-2zy-2zx+z^2\)
rút gọn: x^2+^y2+z^2-2xy-2zx-2yz/x^2-2xy-y^2-z^2
x2 +y2 +z2 -2xy-2zx-2yz=(x-y-z)2 -4yz=(x-y-z)2 - \(2.\sqrt{yz^2}\)=\(\left(x-y-z-2\sqrt{yz}\right)+\left(x-y-z+2\sqrt{yz}\right)\)
x2 -2xy - y2 -z2 =(x-y)2 -z2 =(x-y-z)(x-y+z)
\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}\)
\(\frac{x^2+y^2+z^2-2xy-2yz+2zx}{x^2-2xy+y^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}=\frac{x-y+z}{x-y-z}\)
CMR
(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx
\(\left(x-y-z\right)^2=\left[\left(x-y\right)-z\right]^2\)
\(=\left(x-y\right)^2-2z\left(x-y\right)+z^2\)
\(=x^2-2xy+y^2-2xz+2yz+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)\(\left(đpcm\right)\)
Áp dụng HĐT (a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca đó bạn.
Ta có: (x - y + z)^2 >= 0
<=> x^2 + y^2 + z^2 - 2xy + 2xz - 2yz >= 0
<=> x^2 + y^2 + z^2 >= 2xy - 2xz + 2yz
chung minh rang
x^2 + y^2 +z^2 + 2xy + 2yz + 2zx = ( x+y+z)^2
Xét vế trái ta có: x^2 + y^2 + z^2 + 2xy + 2yz + 2xz
=x^2 + 2xy + y^2 + 2yz + 2xz +z^2
=(x+y)^2 + 2(x+y)z +z^2
=(x+y+z)^2
chox,y,z>0 và x+y+z=3 CMR
P=\(\dfrac{1}{x^2+2yz}+\dfrac{1}{y^2+2zx}+\dfrac{1}{z^2+2xy}\ge1\)
57. Rút gọn phân thức \(B=\dfrac{x^2+y^2+z^2+2xy+2yz+2zx}{x^2-y^2-z^2-2yz}\)
\(B=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y^2+2yz+z^2\right)}=\dfrac{\left(x+y+z\right)^2}{x^2-\left(y+z\right)^2}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x-y-z\right)}=\dfrac{x+y+z}{x-y-z}\)
Chứng minh: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
=[(x+y)+z]2
=(x+y)2+2(x+y)z+z2
=x2+2xy+y2+2xz+2yz+z2
=x2+y2+z2+2xy+2yz+2xz