Cho tam giác nhọn ABC.Các đường cao AD và BE cắt nhau tại H.Đường thẳng vuông góc với AB tại A cắt BE ở K.Chứng minh tam giác EAK đồng dạng tam giác ECH
Tam giác ABC nhọn. Đường cao AD, BE cắt nhau tại H đường thẳng vuông góc với AB tại A cắt BE tại K. C/M EAK đồng dạng ECH
Cho tam giác ABC (các góc đều nhọn) các đường cao AD, BE và CF cắt nhau tại H. Gọi M là trung điểm của BC. Đường thẳng qua H vuông góc với MH cắt AB tại P, cắt AC tại Q Cmr a) tam giác AHP đồng dạng với tam giác CMH, tam giác QHA đồng dạng với tam giác HMB b) HP/AH =MH/CM c) HP=HQ
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) chứng minh tam giác AEB đồng dạng với tam giác AFC
b) chứng minh tam giác AFC đồng dạng với tam giác ABC
c) tia AH cắt BC tại D. chứng minh FC là tia phân giác góc DFE
d) đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM.So sánh diện tích của 2 tam giác AFM và tam giác IOM
Cho tam giác ABC có 3 góc nhọn ( AB<AC) . Các đường cao AD, BE, CF cắt nhau tại H .
a/ Chứng minh: tam giác AEB đồng dạng tam giá AFC, từ đó suy ra AF.AB = AE.AC
b/ Chứng minh: góc AEF = góc ABC
c/ Vẽ DM vuông góc với AB tại M.Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh: DN vuông góc với AC .
d/ Gọi I là trung điểm của HC. Chứmg minh tam giác FAC đồng dạng với tam giác FHB và FA.FB = FI2 - El2
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Cho tam giác ABC có các góc nhọn . Các đường cao AD , BE ,CF cắt nhau tại H . gọi M là trung điểm của BC . Đường thẳng qua H vuông góc với MH cắt cạnh AB tại P , Cắt AC tại Q
CMR :
A) Tam giác AHP đồng dạng tam giác CMH . tam giác QHA đồng dạng tam giác AMB
b) HP = HQ
cho tam giác abc có 3 góc nhọn(AB<AC). Đường cao AI,BE cắt nhau tại H. Chứng minh tam giác AEH đồng dạng với tam giác BIH. Vẽ IM vuông góc với AB tại M. Chứng minh IB.IC=HC.IM. Kẻ CH cắt AB tại F. Qua M vẽ đường thẳng song song với EF cắt AC tại N. Chứng minh:In vuông góc AC
a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có
góc EHA=góc IHB
=>ΔHEA đồng dạng với ΔHIB
b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có
góc MIB=góc ICH
=>ΔMIB đồng dạng với ΔICH
=>IB/CH=IM/IC
=>IB*IC=CH*IM
Cho tam giác ABC nhọn, có BE,AD là đường cao cắt ở H a) CM tam giác CDA đồng dạng tam giác CEB b) CM HA.HD=HB.HE c) CM tam giác ABC đồng dạng tam giác DEC d) Qua D kẻ đường thẳng vuông góc DE cắt BE tại M. CM góc ABC= góc EMD
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc C chung
Do đó: ΔCDA\(\sim\)ΔCEB
b: Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHEA\(\sim\)ΔHDB
Suy ra: HE/HD=HA/HB
hay \(HE\cdot HB=HD\cdot HA\)
Cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC tại P và Q.
a. Chứng minh tam giác AQH đồng dạng với tam giác BHM
b. Chứng minh PH/MH = AH/CM
c. Chứng minh H là trung điểm PQ