Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hàn Băng Di
Xem chi tiết
Phạm Mỹ Châu
25 tháng 7 2018 lúc 16:25

B A C O R Q P

Đặt \(S_{AOC}=x^2;S_{BOC}=y^2;S_{AOB}=z^2\) \(\left(x,y,z>0\right)\)

* Ta thấy tam giác AOB và BOP có chung đường cao kẻ từ B

\(\Rightarrow\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{OA}{OP}\). Tương tự \(\dfrac{S_{AOC}}{S_{COP}}=\dfrac{OA}{OP}\)

\(\Rightarrow\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{BOP}}=\dfrac{S_{AOC}}{S_{COP}}=\dfrac{S_{AOB}+S_{AOC}}{S_{BOP}+S_{COP}}=\dfrac{x^2+z^2}{y^2}\)

Tương tự \(\dfrac{OB}{OQ}=\dfrac{y^2+z^2}{x^2};\dfrac{OC}{OR}=\dfrac{x^2+y^2}{z^2}\)

* Áp dụng BĐT cau-chy ta có

\(\dfrac{x^2}{y^2}+\dfrac{z^2}{y^2}\ge2\sqrt{\dfrac{x^2z^2}{y^4}}=\dfrac{2xz}{y^2}\) .

Tương tự \(\dfrac{y^2+z^2}{x^2}\ge\dfrac{2yz}{x^2}\) ; \(\dfrac{x^2+y^2}{z^2}\ge\dfrac{2xy}{z^2}\)

\(\Rightarrow A=\dfrac{x^2+z^2}{y^2}.\dfrac{y^2+z^2}{x^2}.\dfrac{x^2+y^2}{z^2}\ge8\)

\(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt[3]{\sqrt{A}}=3\sqrt{2}\) - đpcm

Xtxt
Xem chi tiết
Nguyễn Huy Tú
19 tháng 1 2021 lúc 22:22

A B C O P R Q

mai mình nghĩ cho cái này thay nọ thay kia, áp dụng ta lét ( lấy B làm đỉnh ) gợi ý là vậy chứ chưa giải ra :v 

Khách vãng lai đã xóa
Nguyễn Văn Hóa
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 5 2023 lúc 13:00

Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC

Kẻ AH vuông góc BC< OK vuông góc BC

=>OK//AH

OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S

=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)

=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)

Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)

=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)

Phạm Phương Uyên
Xem chi tiết
Vũ Minh Hằng
Xem chi tiết
Hồ Văn Đạt
Xem chi tiết
Minh Hằng Vũ
Xem chi tiết
Bao Nguyen Trong
Xem chi tiết