Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Văn Thành
Xem chi tiết
_lynnz._
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 12:40

a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)

b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)

c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)

d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)

Nguyễn Hồng Hạnh
Xem chi tiết
Kaya Renger
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Kudo Shinichi
Xem chi tiết
Trịnh Gia Bảo
22 tháng 11 2020 lúc 20:09

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

Khách vãng lai đã xóa
Athena
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2021 lúc 23:26

b) Ta có: \(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)

c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

 

missing you =
29 tháng 6 2021 lúc 23:50

\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)

\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)

\(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)

\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2

\(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)

\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)

=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)

dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Đoàn Quang Thái
Xem chi tiết
Nguyễn Phúc Lợi
Xem chi tiết
Phùng Lê Văn Long
4 tháng 12 2021 lúc 19:50
1÷+×/=÷#$%!=
Khách vãng lai đã xóa
Nguyễn Huỳnh Thanh Trúc
4 tháng 12 2021 lúc 19:53

chúc mng lm bài được

Khách vãng lai đã xóa
nguyễn hoàng long
4 tháng 12 2021 lúc 19:54

trả lời đi

Khách vãng lai đã xóa
Tiểu Thiên Bình
Xem chi tiết
Nguyễn Tú Trinh
Xem chi tiết