a) \(A= 2x^2- 3x +1\)
\(=2\left(x^2-\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(=2\left(x^2-2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{1}{16}\right)\)
\(=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
Vậy Amin = \(-\dfrac{1}{8}\) khi \(x=\dfrac{3}{4}\)
b) \(B= 4x^2 +7x + 13\)
\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{7}{4}+\dfrac{49}{16}+\dfrac{159}{16}\)
\(=\left(2x+\dfrac{7}{4}\right)^2+\dfrac{159}{16}\ge\dfrac{159}{16}\)
Vậy Bmin = \(\dfrac{159}{16}\) khi \(x=-\dfrac{7}{8}\)
c) \(C= 5-8x+x^2\)
\(=x^2-2\cdot x\cdot4+16+9\)
\(=\left(x-4\right)^2+9\ge9\)
Vậy Cmin = 9 khi x = 4
d) \(D = (x-1)(x+2)(x+3)(x+6)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Vậy Dmin = - 36 khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)