2)
a) \(x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-4x^2-x^2+4x+4x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy x=1 ; x=2
b) \(2x^3-x^2+3x+6=0\)
\(\Leftrightarrow2x^3-2x-x^2-x+6x+6=0\)
\(\Leftrightarrow\left(2x^3-2x\right)-\left(x^2+x\right)+\left(6x+6\right)=0\)
\(\Leftrightarrow2x\left(x^2-1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+1\right)-x\left(x+1\right)+6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-2x-x+6\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x^2-3x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2x^2-3x=-6\left(loai\right)\end{matrix}\right.\)
Vậy x=-1